Search results
Results from the WOW.Com Content Network
Data mining is a particular data analysis technique that focuses on statistical modeling and knowledge discovery for predictive rather than purely descriptive purposes, while business intelligence covers data analysis that relies heavily on aggregation, focusing mainly on business information. [4]
Data analysis focuses on the process of examining past data through business understanding, data understanding, data preparation, modeling and evaluation, and deployment. [8] It is a subset of data analytics, which takes multiple data analysis processes to focus on why an event happened and what may happen in the future based on the previous data.
Symbolic data analysis (SDA) is an extension of standard data analysis where symbolic data tables are used as input and symbolic objects are made output as a result. The data units are called symbolic since they are more complex than standard ones, as they not only contain values or categories, but also include internal variation and structure.
It can ingest data from offline data sources (such as Hadoop and flat files) as well as online sources (such as Kafka). Pinot is designed to scale horizontally. Mondrian OLAP server is an open-source OLAP server written in Java. It supports the MDX query language, the XML for Analysis and the olap4j interface specifications.
It is important to note, however, that the accuracy and usability of results will depend greatly on the level of data analysis and the quality of assumptions. [1] Predictive analytics is often defined as predicting at a more detailed level of granularity, i.e., generating predictive scores (probabilities) for each individual organizational element.
In the lower plot, both the area and population data have been transformed using the logarithm function. In statistics, data transformation is the application of a deterministic mathematical function to each point in a data set—that is, each data point z i is replaced with the transformed value y i = f(z i), where f is a function.
Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Pages for logged out editors learn more
The difficulty in ensuring data quality is integrating and reconciling data across different systems, and then deciding what subsets of data to make available. [ 3 ] Previously, analytics was considered a type of after-the-fact method of forecasting consumer behavior by examining the number of units sold in the last quarter or the last year.