Search results
Results from the WOW.Com Content Network
There are two distinctive mapping approaches used in the field of genome mapping: genetic maps (also known as linkage maps) [7] and physical maps. [3] While both maps are a collection of genetic markers and gene loci, [8] genetic maps' distances are based on the genetic linkage information, while physical maps use actual physical distances usually measured in number of base pairs.
Physical map is a technique used in molecular biology to find the order and physical distance between DNA base pairs by DNA markers. [1] It is one of the gene mapping techniques which can determine the sequence of DNA base pairs with high accuracy. Genetic mapping, another approach of gene mapping, can provide markers needed for the physical ...
Optical mapping [1] is a technique for constructing ordered, genome-wide, high-resolution restriction maps from single, stained molecules of DNA, called "optical maps". By mapping the location of restriction enzyme sites along the unknown DNA of an organism, the spectrum of resulting DNA fragments collectively serves as a unique "fingerprint" or "barcode" for that sequence.
An example of a variation map is the HapMap being developed by the International HapMap Project. The HapMap is a haplotype map of the human genome, "which will describe the common patterns of human DNA sequence variation." [77] It catalogs the patterns of small-scale variations in the genome that involve single DNA letters, or bases.
In molecular biology, genome architecture mapping (GAM) is a cryosectioning method to map colocalized DNA regions in a ligation independent manner. [ 1 ] [ 2 ] It overcomes some limitations of Chromosome conformation capture (3C), as these methods have a reliance on digestion and ligation to capture interacting DNA segments. [ 3 ]
In molecular biology and genetics, DNA annotation or genome annotation is the process of describing the structure and function of the components of a genome, [2] by analyzing and interpreting them in order to extract their biological significance and understand the biological processes in which they participate. [3]
How to use a microarray for genotyping. The video shows the process of extracting genotypes from a human spit sample using microarrays. Genotyping is a major use of DNA microarrays, but with some modifications they can also be used for other purposes such as measurement of gene expression and epigenetic markers.
Extract and purify DNA. Digest the DNA with a restriction enzyme. This creates fragments that are similar in size, each containing one or more genes. Insert the fragments of DNA into vectors that were cut with the same restriction enzyme. Use the enzyme DNA ligase to seal the DNA fragments into the vector.