enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Nernst equation - Wikipedia

    en.wikipedia.org/wiki/Nernst_equation

    In electrochemistry, the Nernst equation is a chemical thermodynamical relationship that permits the calculation of the reduction potential of a reaction (half-cell or full cell reaction) from the standard electrode potential, absolute temperature, the number of electrons involved in the redox reaction, and activities (often approximated by concentrations) of the chemical species undergoing ...

  3. Table of standard reduction potentials for half-reactions ...

    en.wikipedia.org/wiki/Table_of_standard...

    "Oxidation-reduction potentials, absorbance bands and molar absorbance of compounds used in biochemical studies" (PDF). Fasman GD, Editor. 1: 122– 130. Alberty, Robert A. (1998). "Calculation of standard transformed formation properties of biochemical reactants and standard apparent reduction potentials of half reactions".

  4. Half-reaction - Wikipedia

    en.wikipedia.org/wiki/Half-reaction

    For oxidation-reduction reactions in acidic conditions, after balancing the atoms and oxidation numbers, one will need to add H + ions to balance the hydrogen ions in the half reaction. For oxidation-reduction reactions in basic conditions, after balancing the atoms and oxidation numbers, first treat it as an acidic solution and then add OH − ...

  5. Standard electrode potential - Wikipedia

    en.wikipedia.org/wiki/Standard_electrode_potential

    The electric potential also varies with temperature, concentration and pressure. Since the oxidation potential of a half-reaction is the negative of the reduction potential in a redox reaction, it is sufficient to calculate either one of the potentials. Therefore, standard electrode potential is commonly written as standard reduction potential.

  6. Standard electrode potential (data page) - Wikipedia

    en.wikipedia.org/wiki/Standard_electrode...

    Variations from these ideal conditions affect measured voltage via the Nernst equation. Electrode potentials of successive elementary half-reactions cannot be directly added. However, the corresponding Gibbs free energy changes (∆G°) must satisfy ∆G° = – z FE°,

  7. Cell notation - Wikipedia

    en.wikipedia.org/wiki/Cell_notation

    In electrochemistry, cell notation or cell representation is a shorthand method of expressing a reaction in an electrochemical cell.. In cell notation, the two half-cells are described by writing the formula of each individual chemical species involved in the redox reaction across the cell, with all other common ions and inert substances being ignored.

  8. Tafel equation - Wikipedia

    en.wikipedia.org/wiki/Tafel_equation

    The Tafel equation was first deduced experimentally and was later shown to have a theoretical justification. The equation is named after Swiss chemist Julius Tafel. It describes how the electrical current through an electrode depends on the voltage difference between the electrode and the bulk electrolyte for a simple, unimolecular redox reaction.

  9. Comproportionation - Wikipedia

    en.wikipedia.org/wiki/Comproportionation

    Comproportionation or symproportionation is a chemical reaction where two reactants containing the same element but with different oxidation numbers, form a compound having an intermediate oxidation number. It is the opposite of disproportionation. [1]