Search results
Results from the WOW.Com Content Network
In Bayesian statistics, the posterior predictive distribution is the distribution of possible unobserved values conditional on the observed values. [1] [2]Given a set of N i.i.d. observations = {, …,}, a new value ~ will be drawn from a distribution that depends on a parameter , where is the parameter space.
In the context of Bayesian statistics, the posterior probability distribution usually describes the epistemic uncertainty about statistical parameters conditional on a collection of observed data. From a given posterior distribution, various point and interval estimates can be derived, such as the maximum a posteriori (MAP) or the highest ...
The inference process generates a posterior distribution, which has a central role in Bayesian statistics, together with other distributions like the posterior predictive distribution and the prior predictive distribution. The correct visualization, analysis, and interpretation of these distributions is key to properly answer the questions that ...
Bayesian theory calls for the use of the posterior predictive distribution to do predictive inference, i.e., to predict the distribution of a new, unobserved data point. That is, instead of a fixed point as a prediction, a distribution over possible points is returned. Only this way is the entire posterior distribution of the parameter(s) used.
Step 5: The posterior distribution is approximated with the accepted parameter points. The posterior distribution should have a non-negligible probability for parameter values in a region around the true value of in the system if the data are sufficiently informative. In this example, the posterior probability mass is evenly split between the ...
Bayesian linear regression is a type of conditional modeling in which the mean of one variable is described by a linear combination of other variables, with the goal of obtaining the posterior probability of the regression coefficients (as well as other parameters describing the distribution of the regressand) and ultimately allowing the out-of-sample prediction of the regressand (often ...
For example, the values and of a beta distribution can be thought of as corresponding to successes and failures if the posterior mode is used to choose an optimal parameter setting, or successes and failures if the posterior mean is used to choose an optimal parameter setting. In general, for nearly all conjugate prior distributions, the ...
Integrated nested Laplace approximations (INLA) is a method for approximate Bayesian inference based on Laplace's method. [1] It is designed for a class of models called latent Gaussian models (LGMs), for which it can be a fast and accurate alternative for Markov chain Monte Carlo methods to compute posterior marginal distributions.