enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Fourth, fifth, and sixth derivatives of position - Wikipedia

    en.wikipedia.org/wiki/Fourth,_fifth,_and_sixth...

    Snap, [6] or jounce, [2] is the fourth derivative of the position vector with respect to time, or the rate of change of the jerk with respect to time. [4] Equivalently, it is the second derivative of acceleration or the third derivative of velocity, and is defined by any of the following equivalent expressions: = ȷ = = =.

  3. Derivative - Wikipedia

    en.wikipedia.org/wiki/Derivative

    The higher order derivatives can be applied in physics; for example, while the first derivative of the position of a moving object with respect to time is the object's velocity, how the position changes as time advances, the second derivative is the object's acceleration, how the velocity changes as time advances.

  4. Numerical differentiation - Wikipedia

    en.wikipedia.org/wiki/Numerical_differentiation

    For other stencil configurations and derivative orders, the Finite Difference Coefficients Calculator is a tool that can be used to generate derivative approximation methods for any stencil with any derivative order (provided a solution exists).

  5. Desmos - Wikipedia

    en.wikipedia.org/wiki/Desmos

    Desmos was founded by Eli Luberoff, a math and physics double major from Yale University, [3] and was launched as a startup at TechCrunch's Disrupt New York conference in 2011. [4] As of September 2012 [update] , it had received around 1 million US dollars of funding from Kapor Capital , Learn Capital, Kindler Capital, Elm Street Ventures and ...

  6. Wronskian - Wikipedia

    en.wikipedia.org/wiki/Wronskian

    In mathematics, the Wronskian of n differentiable functions is the determinant formed with the functions and their derivatives up to order n – 1.It was introduced in 1812 by the Polish mathematician Józef Wroński, and is used in the study of differential equations, where it can sometimes show the linear independence of a set of solutions.

  7. Hermite polynomials - Wikipedia

    en.wikipedia.org/wiki/Hermite_polynomials

    Since the power-series coefficients of the exponential are well known, and higher-order derivatives of the monomial x n can be written down explicitly, this differential-operator representation gives rise to a concrete formula for the coefficients of H n that can be used to quickly compute these polynomials.

  8. Grünwald–Letnikov derivative - Wikipedia

    en.wikipedia.org/wiki/Grünwald–Letnikov...

    In mathematics, the Grünwald–Letnikov derivative is a basic extension of the derivative in fractional calculus that allows one to take the derivative a non-integer number of times. It was introduced by Anton Karl Grünwald (1838–1920) from Prague , in 1867, and by Aleksey Vasilievich Letnikov (1837–1888) in Moscow in 1868.

  9. Generalizations of the derivative - Wikipedia

    en.wikipedia.org/wiki/Generalizations_of_the...

    One of the subtle points is that the higher derivatives are not intrinsically defined, and depend on the choice of the coordinates in a complicated fashion (in particular, the Hessian matrix of a function is not a tensor). Nevertheless, higher derivatives have important applications to analysis of local extrema of a function at its critical points.