enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Predictive learning - Wikipedia

    en.wikipedia.org/wiki/Predictive_learning

    Predictive learning is a machine learning (ML) technique where an artificial intelligence model is fed new data to develop an understanding of its environment, capabilities, and limitations. This technique finds application in many areas, including neuroscience , business , robotics , and computer vision .

  3. Rule-based machine learning - Wikipedia

    en.wikipedia.org/wiki/Rule-based_machine_learning

    Rule-based machine learning (RBML) is a term in computer science intended to encompass any machine learning method that identifies, learns, or evolves 'rules' to store, manipulate or apply. [ 1 ] [ 2 ] [ 3 ] The defining characteristic of a rule-based machine learner is the identification and utilization of a set of relational rules that ...

  4. Lift (data mining) - Wikipedia

    en.wikipedia.org/wiki/Lift_(data_mining)

    In data mining and association rule learning, lift is a measure of the performance of a targeting model (association rule) at predicting or classifying cases as having an enhanced response (with respect to the population as a whole), measured against a random choice targeting model.

  5. Rules extraction system family - Wikipedia

    en.wikipedia.org/wiki/Rules_extraction_system_family

    The rules extraction system (RULES) family is a family of inductive learning that includes several covering algorithms. This family is used to build a predictive model based on given observation. It works based on the concept of separate-and-conquer to directly induce rules from a given training set and build its knowledge repository.

  6. Training, validation, and test data sets - Wikipedia

    en.wikipedia.org/wiki/Training,_validation,_and...

    A training data set is a data set of examples used during the learning process and is used to fit the parameters (e.g., weights) of, for example, a classifier. [9] [10]For classification tasks, a supervised learning algorithm looks at the training data set to determine, or learn, the optimal combinations of variables that will generate a good predictive model. [11]

  7. Decision tree learning - Wikipedia

    en.wikipedia.org/wiki/Decision_tree_learning

    Decision tree learning is a supervised learning approach used in statistics, data mining and machine learning.In this formalism, a classification or regression decision tree is used as a predictive model to draw conclusions about a set of observations.

  8. Learning rule - Wikipedia

    en.wikipedia.org/wiki/Learning_rule

    Where represents the learning rate, represents the input of neuron i, and y is the output of the neuron. It has been shown that Hebb's rule in its basic form is unstable. Oja's Rule, BCM Theory are other learning rules built on top of or alongside Hebb's Rule in the study of biological neurons.

  9. Association rule learning - Wikipedia

    en.wikipedia.org/wiki/Association_rule_learning

    Association rule learning is a rule-based machine learning method for discovering interesting relations between variables in large databases. It is intended to identify strong rules discovered in databases using some measures of interestingness. [1]