enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. F-test - Wikipedia

    en.wikipedia.org/wiki/F-test

    The null hypothesis is rejected if the F calculated from the data is greater than the critical value of the F-distribution for some desired false-rejection probability (e.g. 0.05). Since F is a monotone function of the likelihood ratio statistic, the F-test is a likelihood ratio test.

  3. Probability density function - Wikipedia

    en.wikipedia.org/wiki/Probability_density_function

    Unlike a probability, a probability density function can take on values greater than one; for example, the continuous uniform distribution on the interval [0, 1/2] has probability density f(x) = 2 for 0x ≤ 1/2 and f(x) = 0 elsewhere.

  4. Likelihood function - Wikipedia

    en.wikipedia.org/wiki/Likelihood_function

    In many cases, the likelihood is a function of more than one parameter but interest focuses on the estimation of only one, or at most a few of them, with the others being considered as nuisance parameters. Several alternative approaches have been developed to eliminate such nuisance parameters, so that a likelihood can be written as a function ...

  5. F-distribution - Wikipedia

    en.wikipedia.org/wiki/F-distribution

    In probability theory and statistics, the F-distribution or F-ratio, also known as Snedecor's F distribution or the Fisher–Snedecor distribution (after Ronald Fisher and George W. Snedecor), is a continuous probability distribution that arises frequently as the null distribution of a test statistic, most notably in the analysis of variance (ANOVA) and other F-tests.

  6. Maximum and minimum - Wikipedia

    en.wikipedia.org/wiki/Maximum_and_minimum

    If the domain X is a metric space, then f is said to have a local (or relative) maximum point at the point x ∗, if there exists some ε > 0 such that f(x ∗) ≥ f(x) for all x in X within distance ε of x ∗. Similarly, the function has a local minimum point at x ∗, if f(x ∗) ≤ f(x) for all x in X within distance ε of x ∗.

  7. Maximum likelihood estimation - Wikipedia

    en.wikipedia.org/wiki/Maximum_likelihood_estimation

    In statistics, maximum likelihood estimation (MLE) is a method of estimating the parameters of an assumed probability distribution, given some observed data.This is achieved by maximizing a likelihood function so that, under the assumed statistical model, the observed data is most probable.

  8. Asymptotic analysis - Wikipedia

    en.wikipedia.org/wiki/Asymptotic_analysis

    If f(n) = n 2 + 3n, then as n becomes very large, the term 3n becomes insignificant compared to n 2. The function f(n) is said to be "asymptotically equivalent to n 2, as n → ∞". This is often written symbolically as f (n) ~ n 2, which is read as "f(n) is asymptotic to n 2". An example of an important asymptotic result is the prime number ...

  9. Cumulative distribution function - Wikipedia

    en.wikipedia.org/wiki/Cumulative_distribution...

    Cumulative distribution function for the exponential distribution Cumulative distribution function for the normal distribution. In probability theory and statistics, the cumulative distribution function (CDF) of a real-valued random variable, or just distribution function of , evaluated at , is the probability that will take a value less than or equal to .