Search results
Results from the WOW.Com Content Network
A polygene is a member of a group of non-epistatic genes that interact additively to influence a phenotypic trait, thus contributing to multiple-gene inheritance (polygenic inheritance, multigenic inheritance, quantitative inheritance [1]), a type of non-Mendelian inheritance, as opposed to single-gene inheritance, which is the core notion of Mendelian inheritance.
The prevalance of traits with a polygenic basis poses some issues when researching traits and adaptation in natural populations. Separating the effects of genes, environmental factors, and random genetic drift on traits can be difficult with complex traits. [13]
A study of recent polygenic adaptation in the English has shown that selection on height has had small effects on allele frequencies (<1%) across most of the genome, and found evidence for polygenic adaptation in a wide variety of other traits as well including selection for increased infant birth size and increased female hip and waist size. [10]
Polygenic inheritance refers to inheritance of a phenotypic characteristic (trait) that is attributable to two or more genes and can be measured quantitatively. Multifactorial inheritance refers to polygenic inheritance that also includes interactions with the environment.
The infinitesimal model, also known as the polygenic model, is a widely used statistical model in quantitative genetics and in genome-wide association studies.Originally developed in 1918 by Ronald Fisher, it is based on the idea that variation in a quantitative trait is influenced by an infinitely large number of genes, each of which makes an infinitely small (infinitesimal) contribution to ...
This model illustrates polygenic additive effects on phenotype Genetic effects are broadly divided into two categories: additive and non-additive. Additive genetic effects occur where expression of more than one gene contributes to phenotype (or where alleles of a heterozygous gene both contribute), and the phenotypic expression of these gene(s ...
When population-genetic models include a rate-dependent process of mutational introduction or origination, i.e., a process that introduces new alleles including neutral and beneficial ones, then the properties of mutation may have a more direct impact on the rate and direction of evolution, even if the rate of mutation is very low.
Biometric gene–environment interaction has particular currency in population genetics and behavioral genetics. [11] Any interaction results in the breakdown of the additivity of the main effects of heredity and environment, but whether such interaction is present in particular settings is an empirical question. Biometric interaction is ...