Ads
related to: algebra rules for finite sums and differences examplesThis site is a teacher's paradise! - The Bender Bunch
- Interactive Stories
Enchant young learners with
animated, educational stories.
- Worksheet Generator
Use our worksheet generator to make
your own personalized puzzles.
- Guided Lessons
Learn new concepts step-by-step
with colorful guided lessons.
- Activities & Crafts
Stay creative & active with indoor
& outdoor activities for kids.
- Interactive Stories
Search results
Results from the WOW.Com Content Network
A finite difference is a mathematical expression of the form f (x + b) − f (x + a).If a finite difference is divided by b − a, one gets a difference quotient.The approximation of derivatives by finite differences plays a central role in finite difference methods for the numerical solution of differential equations, especially boundary value problems.
An infinite series of any rational function of can be reduced to a finite series of polygamma functions, by use of partial fraction decomposition, [8] as explained here. This fact can also be applied to finite series of rational functions, allowing the result to be computed in constant time even when the series contains a large number of terms.
However, if the terms and their finite sums belong to a set that has limits, it may be possible to assign a value to a series, called the sum of the series. This value is the limit as n {\displaystyle n} tends to infinity of the finite sums of the n {\displaystyle n} first terms of the series if the limit exists.
In mathematics, summation is the addition of a sequence of numbers, called addends or summands; the result is their sum or total.Beside numbers, other types of values can be summed as well: functions, vectors, matrices, polynomials and, in general, elements of any type of mathematical objects on which an operation denoted "+" is defined.
A summation-by-parts (SBP) finite difference operator conventionally consists of a centered difference interior scheme and specific boundary stencils that mimics behaviors of the corresponding integration-by-parts formulation. [3] [4] The boundary conditions are usually imposed by the Simultaneous-Approximation-Term (SAT) technique. [5]
For example, consider the ordinary differential equation ′ = + The Euler method for solving this equation uses the finite difference quotient (+) ′ to approximate the differential equation by first substituting it for u'(x) then applying a little algebra (multiplying both sides by h, and then adding u(x) to both sides) to get (+) + (() +).
Ads
related to: algebra rules for finite sums and differences examplesThis site is a teacher's paradise! - The Bender Bunch