Ads
related to: fiveable convex geometry exampleskutasoftware.com has been visited by 10K+ users in the past month
Search results
Results from the WOW.Com Content Network
Closed convex function - a convex function all of whose sublevel sets are closed sets. Proper convex function - a convex function whose effective domain is nonempty and it never attains minus infinity. Concave function - the negative of a convex function. Convex geometry - the branch of geometry studying convex sets, mainly in Euclidean space ...
Convex geometry is a relatively young mathematical discipline. Although the first known contributions to convex geometry date back to antiquity and can be traced in the works of Euclid and Archimedes, it became an independent branch of mathematics at the turn of the 20th century, mainly due to the works of Hermann Brunn and Hermann Minkowski in dimensions two and three.
Equivalently, a convex set or a convex region is a set that intersects every line in a line segment, single point, or the empty set. [1] [2] For example, a solid cube is a convex set, but anything that is hollow or has an indent, for example, a crescent shape, is not convex. The boundary of a convex set in the plane is always a convex curve.
A conical combination is a linear combination with nonnegative coefficients. When a point is to be used as the reference origin for defining displacement vectors, then is a convex combination of points ,, …, if and only if the zero displacement is a non-trivial conical combination of their respective displacement vectors relative to .
Theorems in convex geometry (19 P) Pages in category "Convex geometry" The following 54 pages are in this category, out of 54 total.
An example of a function which is convex but not strictly convex is (,) = +. This function is not strictly convex because any two points sharing an x coordinate will have a straight line between them, while any two points NOT sharing an x coordinate will have a greater value of the function than the points between them.
In algebraic geometry, convexity is a restrictive technical condition for algebraic varieties originally introduced to analyze Kontsevich moduli spaces ¯, (,) in quantum cohomology. [ 1 ] : §1 [ 2 ] [ 3 ] These moduli spaces are smooth orbifolds whenever the target space is convex.
An example of a convex polygon: a regular pentagon. In geometry, a convex polygon is a polygon that is the boundary of a convex set. This means that the line segment between two points of the polygon is contained in the union of the interior and the boundary of the polygon. In particular, it is a simple polygon (not self-intersecting). [1]
Ads
related to: fiveable convex geometry exampleskutasoftware.com has been visited by 10K+ users in the past month