Search results
Results from the WOW.Com Content Network
An example of a concave polygon. A simple polygon that is not convex is called concave, [1] non-convex [2] or reentrant. [3] A concave polygon will always have at least one reflex interior angle—that is, an angle with a measure that is between 180 degrees and 360 degrees exclusive. [4]
A function f is concave over a convex set if and only if the function −f is a convex function over the set. The sum of two concave functions is itself concave and so is the pointwise minimum of two concave functions, i.e. the set of concave functions on a given domain form a semifield.
The term convex is often referred to as convex down or concave upward, and the term concave is often referred as concave down or convex upward. [3] [4] [5] If the term "convex" is used without an "up" or "down" keyword, then it refers strictly to a cup shaped graph .
Non-convex: a line may be found which meets its boundary more than twice. Equivalently, there exists a line segment between two boundary points that passes outside the polygon. Simple: the boundary of the polygon does not cross itself. All convex polygons are simple. Concave: Non-convex and simple. There is at least one interior angle greater ...
A set that is not convex is called a non-convex set. A polygon that is not a convex polygon is sometimes called a concave polygon, [4] and some sources more generally use the term concave set to mean a non-convex set, [5] but most authorities prohibit this usage. [6] [7]
Convex geometry is a relatively young mathematical discipline. Although the first known contributions to convex geometry date back to antiquity and can be traced in the works of Euclid and Archimedes, it became an independent branch of mathematics at the turn of the 20th century, mainly due to the works of Hermann Brunn and Hermann Minkowski in dimensions two and three.
For every concave kite there exist two circles tangent to two of the sides and the extensions of the other two: one is interior to the kite and touches the two sides opposite from the concave angle, while the other circle is exterior to the kite and touches the kite on the two edges incident to the concave angle. [27] For a convex kite with ...
An example of a convex polygon: a regular pentagon. In geometry, a convex polygon is a polygon that is the boundary of a convex set. This means that the line segment between two points of the polygon is contained in the union of the interior and the boundary of the polygon. In particular, it is a simple polygon (not self-intersecting). [1]