Search results
Results from the WOW.Com Content Network
The process of osmosis over a semipermeable membrane.The blue dots represent particles driving the osmotic gradient. Osmosis (/ ɒ z ˈ m oʊ s ɪ s /, US also / ɒ s-/) [1] is the spontaneous net movement or diffusion of solvent molecules through a selectively-permeable membrane from a region of high water potential (region of lower solute concentration) to a region of low water potential ...
Osmoregulation is the active regulation of the osmotic pressure of an organism's body fluids, detected by osmoreceptors, to maintain the homeostasis of the organism's water content; that is, it maintains the fluid balance and the concentration of electrolytes (salts in solution which in this case is represented by body fluid) to keep the body fluids from becoming too diluted or concentrated.
It occurs in a hypotonic environment, where water moves into the cell by osmosis and causes its volume to increase to the point where the volume exceeds the membrane's capacity and the cell bursts. The presence of a cell wall prevents the membrane from bursting, so cytolysis only occurs in animal and protozoa cells which do not have cell walls.
Dialysis tubing is also frequently used as a teaching aid to demonstrate the principles of diffusion, osmosis, Brownian motion and the movement of molecules across a restrictive membrane. For the principles and usage of dialysis in a research setting, see Dialysis (biochemistry) .
Osmosis in a U-shaped tube. Osmotic pressure is the minimum pressure which needs to be applied to a solution to prevent the inward flow of its pure solvent across a semipermeable membrane. [1] It is also defined as the measure of the tendency of a solution to take in its pure solvent by osmosis.
Osmosis is the process in which water flows from a volume with a low solute concentration (osmolarity), [5] to an adjacent region with a higher solute concentration until equilibrium between the two areas is reached. [6] It is usually accompanied by a favorable increase in the entropy of the solvent.
Current research also suggests that osmotic stress in cells and tissues may significantly contribute to many human diseases. [6] In eukaryotes, calcium acts as one of the primary regulators of osmotic stress. Intracellular calcium levels rise during hypo-osmotic and hyper-osmotic stresses.
Effect of different solutions on red blood cells Micrographs of osmotic pressure on red blood cells. In chemical biology, tonicity is a measure of the effective osmotic pressure gradient; the water potential of two solutions separated by a partially-permeable cell membrane.