enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Eigenvalues and eigenvectors - Wikipedia

    en.wikipedia.org/wiki/Eigenvalues_and_eigenvectors

    Efficient, accurate methods to compute eigenvalues and eigenvectors of arbitrary matrices were not known until the QR algorithm was designed in 1961. [43] Combining the Householder transformation with the LU decomposition results in an algorithm with better convergence than the QR algorithm.

  3. Spectral graph theory - Wikipedia

    en.wikipedia.org/wiki/Spectral_graph_theory

    In mathematics, spectral graph theory is the study of the properties of a graph in relationship to the characteristic polynomial, eigenvalues, and eigenvectors of matrices associated with the graph, such as its adjacency matrix or Laplacian matrix.

  4. Eigenvalue algorithm - Wikipedia

    en.wikipedia.org/wiki/Eigenvalue_algorithm

    Given an n × n square matrix A of real or complex numbers, an eigenvalue λ and its associated generalized eigenvector v are a pair obeying the relation [1] =,where v is a nonzero n × 1 column vector, I is the n × n identity matrix, k is a positive integer, and both λ and v are allowed to be complex even when A is real.l When k = 1, the vector is called simply an eigenvector, and the pair ...

  5. Eigenvalues and eigenvectors of the second derivative

    en.wikipedia.org/wiki/Eigenvalues_and...

    Notation: The index j represents the jth eigenvalue or eigenvector. The index i represents the ith component of an eigenvector. Both i and j go from 1 to n, where the matrix is size n x n. Eigenvectors are normalized. The eigenvalues are ordered in descending order.

  6. Principal component analysis - Wikipedia

    en.wikipedia.org/wiki/Principal_component_analysis

    Principal component analysis (PCA) is a linear dimensionality reduction technique with applications in exploratory data analysis, visualization and data preprocessing.. The data is linearly transformed onto a new coordinate system such that the directions (principal components) capturing the largest variation in the data can be easily identified.

  7. Spectral theory - Wikipedia

    en.wikipedia.org/wiki/Spectral_theory

    In mathematics, spectral theory is an inclusive term for theories extending the eigenvector and eigenvalue theory of a single square matrix to a much broader theory of the structure of operators in a variety of mathematical spaces. [1] It is a result of studies of linear algebra and the solutions of systems of linear equations and their ...

  8. Graph Fourier transform - Wikipedia

    en.wikipedia.org/wiki/Graph_Fourier_transform

    In mathematics, the graph Fourier transform is a mathematical transform which eigendecomposes the Laplacian matrix of a graph into eigenvalues and eigenvectors.Analogously to the classical Fourier transform, the eigenvalues represent frequencies and eigenvectors form what is known as a graph Fourier basis.

  9. Scientific visualization - Wikipedia

    en.wikipedia.org/wiki/Scientific_visualization

    The primary methods for visualizing two-dimensional (2D) scalar fields are color mapping and drawing contour lines. 2D vector fields are visualized using glyphs and streamlines or line integral convolution methods. 2D tensor fields are often resolved to a vector field by using one of the two eigenvectors to represent the tensor each point in ...