Search results
Results from the WOW.Com Content Network
The split normal distribution results from merging two halves of normal distributions. In a general case the 'parent' normal distributions can have different variances which implies that the joined PDF would not be continuous. To ensure that the resulting PDF integrates to 1, the normalizing constant A is used.
Generalized hypergeometric functions include the (Gaussian) hypergeometric function and the confluent hypergeometric function as special cases, which in turn have many particular special functions as special cases, such as elementary functions, Bessel functions, and the classical orthogonal polynomials.
SciPy (pronounced / ˈ s aɪ p aɪ / "sigh pie" [2]) is a free and open-source Python library used for scientific computing and technical computing. [3]SciPy contains modules for optimization, linear algebra, integration, interpolation, special functions, FFT, signal and image processing, ODE solvers and other tasks common in science and engineering.
The generalized normal log-likelihood function has infinitely many continuous derivates (i.e. it belongs to the class C ∞ of smooth functions) only if is a positive, even integer. Otherwise, the function has ⌊ β ⌋ {\displaystyle \textstyle \lfloor \beta \rfloor } continuous derivatives.
Hoyt distribution, the pdf of the vector length of a bivariate normally distributed vector (correlated and centered) Complex normal distribution, an application of bivariate normal distribution; Copula, for the definition of the Gaussian or normal copula model.
In terms of the circular variable = the circular moments of the wrapped normal distribution are the characteristic function of the normal distribution evaluated at integer arguments: z n = ∫ Γ e i n θ f W N ( θ ; μ , σ ) d θ = e i n μ − n 2 σ 2 / 2 . {\displaystyle \langle z^{n}\rangle =\int _{\Gamma }e^{in\theta }\,f_{WN}(\theta ...
Mathematically, the derivatives of the Gaussian function can be represented using Hermite functions. For unit variance, the n-th derivative of the Gaussian is the Gaussian function itself multiplied by the n-th Hermite polynomial, up to scale. Consequently, Gaussian functions are also associated with the vacuum state in quantum field theory.
All these extensions are also called normal or Gaussian laws, so a certain ambiguity in names exists. The multivariate normal distribution describes the Gaussian law in the k-dimensional Euclidean space. A vector X ∈ R k is multivariate-normally distributed if any linear combination of its components Σ k j=1 a j X j has a (univariate) normal ...