enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Gradient descent - Wikipedia

    en.wikipedia.org/wiki/Gradient_descent

    The properties of gradient descent depend on the properties of the objective function and the variant of gradient descent used (for example, if a line search step is used). The assumptions made affect the convergence rate, and other properties, that can be proven for gradient descent. [ 33 ]

  3. Stochastic gradient descent - Wikipedia

    en.wikipedia.org/wiki/Stochastic_gradient_descent

    Stochastic gradient descent competes with the L-BFGS algorithm, [citation needed] which is also widely used. Stochastic gradient descent has been used since at least 1960 for training linear regression models, originally under the name ADALINE. [25] Another stochastic gradient descent algorithm is the least mean squares (LMS) adaptive filter.

  4. Conjugate gradient method - Wikipedia

    en.wikipedia.org/wiki/Conjugate_gradient_method

    A comparison of the convergence of gradient descent with optimal step size (in green) and conjugate vector (in red) for minimizing a quadratic function associated with a given linear system. Conjugate gradient, assuming exact arithmetic, converges in at most n steps, where n is the size of the matrix of the system (here n = 2).

  5. Line search - Wikipedia

    en.wikipedia.org/wiki/Line_search

    The descent direction can be computed by various methods, such as gradient descent or quasi-Newton method. The step size can be determined either exactly or inexactly. Here is an example gradient method that uses a line search in step 5:

  6. Least mean squares filter - Wikipedia

    en.wikipedia.org/wiki/Least_mean_squares_filter

    This is based on the gradient descent algorithm. The algorithm starts by assuming small weights (zero in most cases) and, at each step, by finding the gradient of the mean square error, the weights are updated.

  7. Barzilai-Borwein method - Wikipedia

    en.wikipedia.org/wiki/Barzilai-Borwein_method

    The Barzilai-Borwein method [1] is an iterative gradient descent method for unconstrained optimization using either of two step sizes derived from the linear trend of the most recent two iterates. This method, and modifications, are globally convergent under mild conditions, [ 2 ] [ 3 ] and perform competitively with conjugate gradient methods ...

  8. Backtracking line search - Wikipedia

    en.wikipedia.org/wiki/Backtracking_line_search

    Another way is the so-called adaptive standard GD or SGD, some representatives are Adam, Adadelta, RMSProp and so on, see the article on Stochastic gradient descent. In adaptive standard GD or SGD, learning rates are allowed to vary at each iterate step n, but in a different manner from Backtracking line search for gradient descent.

  9. Gradient method - Wikipedia

    en.wikipedia.org/wiki/Gradient_method

    In optimization, a gradient method is an algorithm to solve problems of the form with the search directions defined by the gradient of the function at the current point. Examples of gradient methods are the gradient descent and the conjugate gradient.