enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Iron(III) oxide - Wikipedia

    en.wikipedia.org/wiki/Iron(III)_oxide

    Iron(III) oxide is a product of the oxidation of iron. It can be prepared in the laboratory by electrolyzing a solution of sodium bicarbonate, an inert electrolyte, with an iron anode: 4 Fe + 3 O 2 + 2 H 2 O → 4 FeO(OH) The resulting hydrated iron(III) oxide, written here as FeO(OH), dehydrates around 200 °C. [18] [19] 2 FeO(OH) → Fe 2 O 3 ...

  3. Schikorr reaction - Wikipedia

    en.wikipedia.org/wiki/Schikorr_reaction

    Magnified crystals of iron(II,III) oxide (Fe 3 O 4), the end-product of the Schikorr reaction along with hydrogen gas. The Schikorr reaction formally describes the conversion of the iron(II) hydroxide (Fe(OH) 2) into iron(II,III) oxide (Fe 3 O 4). This transformation reaction was first studied by Gerhard Schikorr. The global reaction follows:

  4. Stoichiometry - Wikipedia

    en.wikipedia.org/wiki/Stoichiometry

    Consider the following reaction, in which iron(III) chloride reacts with hydrogen sulfide to produce iron(III) sulfide and hydrogen chloride: 2 FeCl 3 + 3 H 2 S → Fe 2 S 3 + 6 HCl. The stoichiometric masses for this reaction are: 324.41 g FeCl 3, 102.25 g H 2 S, 207.89 g Fe 2 S 3, 218.77 g HCl. Suppose 90.0 g of FeCl 3 reacts with 52.0 g of H ...

  5. Iron (II,III) oxide - Wikipedia

    en.wikipedia.org/wiki/Iron(II,III)_oxide

    Iron(II,III) oxide, or black iron oxide, is the chemical compound with formula Fe 3 O 4. It occurs in nature as the mineral magnetite . It is one of a number of iron oxides , the others being iron(II) oxide (FeO), which is rare, and iron(III) oxide (Fe 2 O 3 ) which also occurs naturally as the mineral hematite .

  6. Iron oxide - Wikipedia

    en.wikipedia.org/wiki/Iron_oxide

    Iron oxides feature as ferrous or ferric or both. They adopt octahedral or tetrahedral coordination geometry. Only a few oxides are significant at the earth's surface, particularly wüstite, magnetite, and hematite. Oxides of Fe II. FeO: iron(II) oxide, wüstite; Mixed oxides of Fe II and Fe III. Fe 3 O 4: Iron(II,III) oxide, magnetite; Fe 4 O ...

  7. Aluminothermic reaction - Wikipedia

    en.wikipedia.org/wiki/Aluminothermic_reaction

    Aluminothermic reactions are exothermic chemical reactions using aluminium as the reducing agent at high temperature. The process is industrially useful for production of alloys of iron. [1] The most prominent example is the thermite reaction between iron oxides and aluminium to produce iron itself: Fe 2 O 3 + 2 Al → 2 Fe + Al 2 O 3

  8. Standard enthalpy of formation - Wikipedia

    en.wikipedia.org/wiki/Standard_enthalpy_of_formation

    For many substances, the formation reaction may be considered as the sum of a number of simpler reactions, either real or fictitious. The enthalpy of reaction can then be analyzed by applying Hess' law, which states that the sum of the enthalpy changes for a number of individual reaction steps equals the enthalpy change of the overall reaction.

  9. Iron oxide cycle - Wikipedia

    en.wikipedia.org/wiki/Iron_oxide_cycle

    For chemical reactions, the iron oxide cycle (Fe 3 O 4 /FeO) is the original two-step thermochemical cycle proposed for use for hydrogen production. [1] It is based on the reduction and subsequent oxidation of iron ions, particularly the reduction and oxidation between Fe 3+ and Fe 2+ .