Search results
Results from the WOW.Com Content Network
One of the main uses of zirconium alloys is in nuclear technology, as cladding of fuel rods in nuclear reactors, especially water reactors. A typical composition of nuclear-grade zirconium alloys is more than 95 weight percent [ 1 ] zirconium and less than 2% of tin , niobium , iron , chromium , nickel and other metals, which are added to ...
The residual decay heat causes rapid increase in temperature and internal pressure of the fuel cladding which leads to plastic deformation and subsequent bursting. During a loss-of-coolant accident, zirconium-based fuel claddings undergo high temperature oxidation, phase transformation, and creep deformation simultaneously. [3]
Cladding is the outer layer of the fuel rods, standing between the coolant and the nuclear fuel. It is made of a corrosion -resistant material with low absorption cross section for thermal neutrons , usually Zircaloy or steel in modern constructions, or magnesium with small amount of aluminium and other metals for the now-obsolete Magnox reactors .
Transient testing focuses upon testing nuclear fuel under accident conditions. TREAT is one of the most capable and flexible transient test reactors in the world. Following the accident at the Fukushima-Daiichi Power Plant in Japan 11 years ago, Congress directed the DOE to develop reactor fuels that could better withstand accident conditions.
These can cause stress corrosion cracking of metal parts which include fuel cladding and other pipework. To mitigate this hydrazine and hydrogen are injected into a BWR or PWR primary cooling circuit as corrosion inhibitors to adjust the redox properties of the system. A review of recent developments on this topic has been published. [10]
Once the fuel elements of a reactor begin to melt, the fuel cladding has been breached, and the nuclear fuel (such as uranium, plutonium, or thorium) and fission products (such as caesium-137, krypton-85, or iodine-131) within the fuel elements can leach out into the coolant. Subsequent failures can permit these radioisotopes to breach further ...
For premium support please call: 800-290-4726 more ways to reach us
A protonic ceramic fuel cell or PCFC is a fuel cell based around a ceramic, solid, electrolyte material as the proton conductor from anode to cathode. [1] These fuel cells produce electricity by removing an electron from a hydrogen atom, pushing the charged hydrogen atom through the ceramic membrane, and returning the electron to the hydrogen ...