enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Polynomial root-finding - Wikipedia

    en.wikipedia.org/wiki/Polynomial_root-finding

    The class of methods is based on converting the problem of finding polynomial roots to the problem of finding eigenvalues of the companion matrix of the polynomial, [1] in principle, can use any eigenvalue algorithm to find the roots of the polynomial. However, for efficiency reasons one prefers methods that employ the structure of the matrix ...

  3. Closed-form expression - Wikipedia

    en.wikipedia.org/wiki/Closed-form_expression

    The quadratic formula =. is a closed form of the solutions to the general quadratic equation + + =. More generally, in the context of polynomial equations, a closed form of a solution is a solution in radicals; that is, a closed-form expression for which the allowed functions are only n th-roots and field operations (+,,, /).

  4. Rational root theorem - Wikipedia

    en.wikipedia.org/wiki/Rational_root_theorem

    In the polynomial + the only possible rational roots would have a numerator that divides 6 and a denominator that divides 1, limiting the possibilities to ±1, ±2, ±3, and ±6. Of these, 1, 2, and –3 equate the polynomial to zero, and hence are its rational roots (in fact these are its only roots since a cubic polynomial has only three roots).

  5. Horner's method - Wikipedia

    en.wikipedia.org/wiki/Horner's_method

    The final root of the original polynomial may be found by either using the final zero as an initial guess for Newton's method, or by reducing () and solving the linear equation. As can be seen, the expected roots of −8, −5, −3, 2, 3, and 7 were found.

  6. Graeffe's method - Wikipedia

    en.wikipedia.org/wiki/Graeffe's_method

    In 1837 Karl Heinrich Gräffe also discovered the principal idea of the method. [1] The method separates the roots of a polynomial by squaring them repeatedly. This squaring of the roots is done implicitly, that is, only working on the coefficients of the polynomial. Finally, Viète's formulas are used in order to approximate the roots.

  7. Muller's method - Wikipedia

    en.wikipedia.org/wiki/Muller's_method

    Muller's method is a root-finding algorithm, a numerical method for solving equations of the form f(x) = 0.It was first presented by David E. Muller in 1956.. Muller's method proceeds according to a third-order recurrence relation similar to the second-order recurrence relation of the secant method.

  8. Cubic equation - Wikipedia

    en.wikipedia.org/wiki/Cubic_equation

    The other roots of the equation are obtained either by changing of cube root or, equivalently, by multiplying the cube root by a primitive cube root of unity, that is . This formula for the roots is always correct except when p = q = 0 , with the proviso that if p = 0 , the square root is chosen so that C ≠ 0 .

  9. Bairstow's method - Wikipedia

    en.wikipedia.org/wiki/Bairstow's_method

    Bairstow's approach is to use Newton's method to adjust the coefficients u and v in the quadratic + + until its roots are also roots of the polynomial being solved. The roots of the quadratic may then be determined, and the polynomial may be divided by the quadratic to eliminate those roots.