Search results
Results from the WOW.Com Content Network
Increasing temperature results in a decrease in viscosity because a larger temperature means particles have greater thermal energy and are more easily able to overcome the attractive forces binding them together. An everyday example of this viscosity decrease is cooking oil moving more fluidly in a hot frying pan than in a cold one.
The Vogel–Fulcher–Tammann equation, also known as Vogel–Fulcher–Tammann–Hesse equation or Vogel–Fulcher equation (abbreviated: VFT equation), is used to describe the viscosity of liquids as a function of temperature, and especially its strongly temperature dependent variation in the supercooled regime, upon approaching the glass transition.
The poise is often used with the metric prefix centi-because the viscosity of water at 20 °C (standard conditions for temperature and pressure) is almost exactly 1 centipoise. [3] A centipoise is one hundredth of a poise, or one millipascal-second (mPa⋅s) in SI units (1 cP = 10 −3 Pa⋅s = 1 mPa⋅s). [4] The CGS symbol for the centipoise ...
Dimensionless numbers (or characteristic numbers) have an important role in analyzing the behavior of fluids and their flow as well as in other transport phenomena. [1] They include the Reynolds and the Mach numbers, which describe as ratios the relative magnitude of fluid and physical system characteristics, such as density, viscosity, speed of sound, and flow speed.
Taking water with a bulk fluid average temperature of 20 °C (68 °F), viscosity 10.07 × 10 −4 Pa.s and a heat transfer surface temperature of 40 °C (104 °F) (viscosity 6.96 × 10 −4 Pa.s, a viscosity correction factor for (/) can be obtained as 1.45.
Consequently, if a liquid has dynamic viscosity of n centiPoise, and its density is not too different from that of water, then its kinematic viscosity is around n centiStokes. For gas, the dynamic viscosity is usually in the range of 10 to 20 microPascal-seconds, or 0.01 to 0.02 centiPoise. The density is usually on the order of 0.5 to 5 kg/m^3.
A is a coefficient that describes the impact of charge–charge interactions on the viscosity of a solution (it is usually positive) and can be calculated from Debye–Hückel theory, B is a coefficient that characterises the solute–solvent interactions at a defined temperature and pressure, C is the solute concentration.
The Hazen–Williams equation has the advantage that the coefficient C is not a function of the Reynolds number, but it has the disadvantage that it is only valid for water. Also, it does not account for the temperature or viscosity of the water, [3] and therefore is only valid at room temperature and conventional velocities. [4]