Ad
related to: examples of prime polynomial functions
Search results
Results from the WOW.Com Content Network
But the only way (+) = = for all k is if the polynomial function is constant. The same reasoning shows an even stronger result: no non-constant polynomial function P(n) exists that evaluates to a prime number for almost all integers n. Euler first noticed (in 1772) that the quadratic polynomial
For example, they are used to form polynomial equations, which encode a wide range of problems, from elementary word problems to complicated scientific problems; they are used to define polynomial functions, which appear in settings ranging from basic chemistry and physics to economics and social science; and they are used in calculus and ...
The field F is algebraically closed if and only if every rational function in one variable x, with coefficients in F, can be written as the sum of a polynomial function with rational functions of the form a/(x − b) n, where n is a natural number, and a and b are elements of F.
Furthermore, the function taking an affine algebraic set W and returning I(W), the set of all functions that also vanish on all points of W, is the inverse of the function assigning an algebraic set to a radical ideal, by the nullstellensatz. Hence the correspondence between affine algebraic sets and radical ideals is a bijection.
A corollary of the Mason–Stothers theorem is the analog of Fermat's Last Theorem for function fields: if a(t) n + b(t) n = c(t) n for a, b, c relatively prime polynomials over a field of characteristic not dividing n and n > 2 then either at least one of a, b, or c is 0 or they are all constant.
Algebraic functions are functions that can be expressed as the solution of a polynomial equation with integer coefficients. Polynomials: Can be generated solely by addition, multiplication, and raising to the power of a positive integer. Constant function: polynomial of degree zero, graph is a horizontal straight line
The Bunyakovsky conjecture generalizes Dirichlet's theorem to higher-degree polynomials. Whether or not even simple quadratic polynomials such as x 2 + 1 (known from Landau's fourth problem) attain infinitely many prime values is an important open problem. Dickson's conjecture generalizes Dirichlet's theorem to more than one polynomial.
A simple example: In the ring =, the subset of even numbers is a prime ideal.; Given an integral domain, any prime element generates a principal prime ideal ().For example, take an irreducible polynomial (, …,) in a polynomial ring [, …,] over some field.
Ad
related to: examples of prime polynomial functions