Search results
Results from the WOW.Com Content Network
In computer science, the longest repeated substring problem is the problem of finding the longest substring of a string that occurs at least twice. This problem can be solved in linear time and space Θ ( n ) {\displaystyle \Theta (n)} by building a suffix tree for the string (with a special end-of-string symbol like '$' appended), and finding ...
The variable z is used to hold the length of the longest common substring found so far. The set ret is used to hold the set of strings which are of length z. The set ret can be saved efficiently by just storing the index i, which is the last character of the longest common substring (of size z) instead of S[(i-z+1)..i].
Finding the longest repeated substring; Finding the longest common substring; Finding the longest palindrome in a string; Suffix trees are often used in bioinformatics applications, searching for patterns in DNA or protein sequences (which can be viewed as long strings of characters). The ability to search efficiently with mismatches might be ...
The prefix S n of S is defined as the first n characters of S. [5] For example, the prefixes of S = (AGCA) are S 0 = S 1 = (A) S 2 = (AG) S 3 = (AGC) S 4 = (AGCA). Let LCS(X, Y) be a function that computes a longest subsequence common to X and Y. Such a function has two interesting properties.
A more efficient method would never repeat the same distance calculation. For example, the Levenshtein distance of all possible suffixes might be stored in an array , where [] [] is the distance between the last characters of string s and the last characters of string t. The table is easy to construct one row at a time starting with row 0.
A simple and inefficient way to see where one string occurs inside another is to check at each index, one by one. First, we see if there is a copy of the needle starting at the first character of the haystack; if not, we look to see if there's a copy of the needle starting at the second character of the haystack, and so forth.
Damerau–Levenshtein distance counts as a single edit a common mistake: transposition of two adjacent characters, formally characterized by an operation that changes u x y v into u y x v. [3] [4] For the task of correcting OCR output, merge and split operations have been used which replace a single character into a pair of them or vice versa. [4]
ROUGE-1 refers to the overlap of unigrams (each word) between the system and reference summaries. ROUGE-2 refers to the overlap of bigrams between the system and reference summaries. ROUGE-L: Longest Common Subsequence (LCS) [3] based statistics.