Search results
Results from the WOW.Com Content Network
The work–energy principle states that an increase in the kinetic energy of a rigid body is caused by an equal amount of positive work done on the body by the resultant force acting on that body. Conversely, a decrease in kinetic energy is caused by an equal amount of negative work done by the resultant force.
The gravitational potential (V) at a location is the gravitational potential energy (U) at that location per unit mass: =, where m is the mass of the object. Potential energy is equal (in magnitude, but negative) to the work done by the gravitational field moving a body to its given position in space from infinity.
For two pairwise interacting point particles, the gravitational potential energy is the work that an outside agent must do in order to quasi-statically bring the masses together (which is therefore, exactly opposite the work done by the gravitational field on the masses): = = where is the displacement vector of the mass, is gravitational force acting on it and denotes scalar product.
The non-mechanical work of force fields can have either positive or negative sign, work being done by the system on the surroundings, or vice versa. Work done by force fields can be done indefinitely slowly, so as to approach the fictive reversible quasi-static ideal, in which entropy is not created in the system by the process.
The amount of gravitational potential energy held by an elevated object is equal to the work done against gravity in lifting it. The work done equals the force required to move it upward multiplied with the vertical distance it is moved (remember W = Fd). The upward force required while moving at a constant velocity is equal to the weight, mg ...
This is illustrated in the figure to the right: The work done by the gravitational force on an object depends only on its change in height because the gravitational force is conservative. The work done by a conservative force is equal to the negative of change in potential energy during that process.
Now, the work by the force of gravity is opposite to the change in potential energy, W gravity = −ΔE pot,gravity: while the force of gravity is in the negative z-direction, the work—gravity force times change in elevation—will be negative for a positive elevation change Δz = z 2 − z 1, while the corresponding potential energy change ...
By convention, it is always negative where it is defined, and as x tends to infinity, it approaches zero. The gravitational field, and thus the acceleration of a small body in the space around the massive object, is the negative gradient of the gravitational potential. Thus the negative of a negative gradient yields positive acceleration toward ...