Search results
Results from the WOW.Com Content Network
To derive the equations of special relativity, one must start with two other The laws of physics are invariant under transformations between inertial frames. In other words, the laws of physics will be the same whether you are testing them in a frame 'at rest', or a frame moving with a constant velocity relative to the 'rest' frame.
Taiji relativity is a formulation of special relativity developed by Jong-Ping Hsu and Leonardo Hsu. [1] [11] [12] [13] The name of the theory, Taiji, is a Chinese word which refers to ultimate principles which predate the existence of the world. Hsu and Hsu claimed that measuring time in units of distance allowed them to develop a theory of ...
Vladimir Karapetoff (1944) "The special theory of relativity in hyperbolic functions", Reviews of Modern Physics 16:33–52, Abstract & link to pdf Lanczos, Cornelius (1949), The Variational Principles of Mechanics , University of Toronto Press , pp. 304– 312 Also used biquaternions.
English: This file is the special relativity lecture of the Wikiversity:Special relativity and steps towards general relativity course. It is in pdf format for convenient viewing as a fullscreen, structured presentation in a classroom.
Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Donate; Pages for logged out editors learn more
Special relativity is a theory of the structure of spacetime. It was introduced in Einstein's 1905 paper "On the Electrodynamics of Moving Bodies" (for the contributions of many other physicists and mathematicians, see History of special relativity). Special relativity is based on two postulates which are contradictory in classical mechanics:
The Einstein–Infeld–Hoffmann equations of motion, jointly derived by Albert Einstein, Leopold Infeld and Banesh Hoffmann, are the differential equations describing the approximate dynamics of a system of point-like masses due to their mutual gravitational interactions, including general relativistic effects.
1. First postulate (principle of relativity) The laws of physics take the same form in all inertial frames of reference.. 2. Second postulate (invariance of c) . As measured in any inertial frame of reference, light is always propagated in empty space with a definite velocity c that is independent of the state of motion of the emitting body.