Search results
Results from the WOW.Com Content Network
Phase-contrast microscopy is particularly important in biology. It reveals many cellular structures that are invisible with a bright-field microscope, as exemplified in the figure. These structures were made visible to earlier microscopists by staining, but this required additional preparation and death of the cells. The phase-contrast ...
In the field of transmission electron microscopy, phase-contrast imaging may be employed to image columns of individual atoms; a more common name is high-resolution transmission electron microscopy. It is the highest resolution imaging technique ever developed, and can allow for resolutions of less than one angstrom (less than 0.1 nanometres).
Phase-contrast microscope, which applies the phase contrast illumination method. Epifluorescence microscope , designed for analysis of samples that include fluorophores. Confocal microscope , a widely used variant of epifluorescent illumination that uses a scanning laser to illuminate a sample for fluorescence.
X-ray absorption (left) and differential phase-contrast (right) image of an in-ear headphone obtained with a grating interferometer at 60kVp. Phase-contrast X-ray imaging or phase-sensitive X-ray imaging is a general term for different technical methods that use information concerning changes in the phase of an X-ray beam that passes through an object in order to create its images.
Quantitative phase contrast microscopy or quantitative phase imaging are the collective names for a group of microscopy methods that quantify the phase shift that occurs when light waves pass through a more optically dense object. [1] [2] Translucent objects, like a living human cell, absorb and scatter small amounts of light.
TEM Ray Diagram with Phase Contrast Transfer Function. Contrast transfer theory provides a quantitative method to translate the exit wavefunction to a final image. Part of the analysis is based on Fourier transforms of the electron beam wavefunction. When an electron wavefunction passes through a lens, the wavefunction goes through a Fourier ...
Dark-field microscopy produces an image with a dark background Operating principles of dark-field and phase-contrast microscopies Dark-field microscopy is a very simple yet effective technique and well suited for uses involving live and unstained biological samples, such as a smear from a tissue culture or individual, water-borne, single-celled ...
After its introduction in the 1940s, live-cell imaging rapidly became popular using phase-contrast microscopy. [11] The phase-contrast microscope was popularized through a series of time-lapse movies (see video), recorded using a photographic film camera. [12] Its inventor, Frits Zernike, was awarded the Nobel Prize in 1953. [13]