Ad
related to: dimensionless quantities statistics problems and solutions answer page
Search results
Results from the WOW.Com Content Network
This is a list of well-known dimensionless quantities illustrating their variety of forms and applications. The tables also include pure numbers , dimensionless ratios, or dimensionless physical constants ; these topics are discussed in the article.
Dimensionless quantities, or quantities of dimension one, [1] are quantities implicitly defined in a manner that prevents their aggregation into units of measurement. [ 2 ] [ 3 ] Typically expressed as ratios that align with another system, these quantities do not necessitate explicitly defined units .
But, in concept, there is no problem adding quantities of the same dimension expressed in different units. For example, 1 metre added to 1 foot is a length, but one cannot derive that length by simply adding 1 and 1. A conversion factor, which is a ratio of like-dimensioned quantities and is equal to the dimensionless unity, is needed:
Nondimensionalization is the partial or full removal of physical dimensions from an equation involving physical quantities by a suitable substitution of variables. This technique can simplify and parameterize problems where measured units are involved. It is closely related to dimensional analysis.
Dimensionless numbers (or characteristic numbers) have an important role in analyzing the behavior of fluids and their flow as well as in other transport phenomena. [1] They include the Reynolds and the Mach numbers, which describe as ratios the relative magnitude of fluid and physical system characteristics, such as density, viscosity, speed of sound, and flow speed.
Pages in category "Dimensionless quantities" The following 9 pages are in this category, out of 9 total. ... Statistics; Cookie statement; Mobile view ...
Dimensionless quantities (2 C, 9 P) R. Ratios (11 C, 58 P) T. Dimensionless numbers of thermodynamics (21 P) U. Dimensionless units (1 C, 4 P) ... Statistics; Cookie ...
Although named for Edgar Buckingham, the π theorem was first proved by the French mathematician Joseph Bertrand in 1878. [1] Bertrand considered only special cases of problems from electrodynamics and heat conduction, but his article contains, in distinct terms, all the basic ideas of the modern proof of the theorem and clearly indicates the theorem's utility for modelling physical phenomena.
Ad
related to: dimensionless quantities statistics problems and solutions answer page