enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Bode plot - Wikipedia

    en.wikipedia.org/wiki/Bode_plot

    It is usually a combination of a Bode magnitude plot, expressing the magnitude (usually in decibels) of the frequency response, and a Bode phase plot, expressing the phase shift. As originally conceived by Hendrik Wade Bode in the 1930s, the plot is an asymptotic approximation of the frequency response, using straight line segments .

  3. Frequency response - Wikipedia

    en.wikipedia.org/wiki/Frequency_response

    Magnitude response of a low pass filter with 6 dB per octave or 20 dB per decade roll-off. Measuring the frequency response typically involves exciting the system with an input signal and measuring the resulting output signal, calculating the frequency spectra of the two signals (for example, using the fast Fourier transform for discrete signals), and comparing the spectra to isolate the ...

  4. Phase margin - Wikipedia

    en.wikipedia.org/wiki/Phase_margin

    Bode plot illustrating phase margin. In electronic amplifiers, the phase margin (PM) is the difference between the phase lag φ (< 0) and -180°, for an amplifier's output signal (relative to its input) at zero dB gain - i.e. unity gain, or that the output signal has the same amplitude as the input.

  5. Cutoff frequency - Wikipedia

    en.wikipedia.org/wiki/Cutoff_frequency

    It is sometimes taken to be the point in the filter response where a transition band and passband meet, for example, as defined by a half-power point (a frequency for which the output of the circuit is approximately −3.01 dB of the nominal passband value). Alternatively, a stopband corner frequency may be specified as a point where a ...

  6. Step response - Wikipedia

    en.wikipedia.org/wiki/Step_response

    For example, f 0 dB = βA 0 × f 1. Next, the choice of pole ratio τ 1 /τ 2 is related to the phase margin of the feedback amplifier. [9] The procedure outlined in the Bode plot article is followed. Figure 5 is the Bode gain plot for the two-pole amplifier in the range of frequencies up to the second pole position.

  7. Cell Transmission Model - Wikipedia

    en.wikipedia.org/wiki/Cell_Transmission_Model

    The flow across the cells is determined based on μ(k) and λ(k), two monotonic functions that uniquely define the fundamental diagram as shown in Figure 1. The density of the cells is updated based on the conservation of inflows and outflows. Thus, the flow and density are derived as: Where: and represent density and flow in cell i at time t.

  8. Coherence (signal processing) - Wikipedia

    en.wikipedia.org/wiki/Coherence_(signal_processing)

    The coherence (sometimes called magnitude-squared coherence) between two signals x(t) and y(t) is a real-valued function that is defined as: [1] [2] = | | ()where G xy (f) is the Cross-spectral density between x and y, and G xx (f) and G yy (f) the auto spectral density of x and y respectively.

  9. Warburg element - Wikipedia

    en.wikipedia.org/wiki/Warburg_element

    The Warburg diffusion element (Z W) is a constant phase element (CPE), with a constant phase of 45° (phase independent of frequency) and with a magnitude inversely proportional to the square root of the frequency by: