Search results
Results from the WOW.Com Content Network
An infinite series of any rational function of can be reduced to a finite series of polygamma functions, by use of partial fraction decomposition, [8] as explained here. This fact can also be applied to finite series of rational functions, allowing the result to be computed in constant time even when the series contains a large number of terms.
The actual values are only computed when needed. For example, one could create a function that creates an infinite list (often called a stream) of Fibonacci numbers. The calculation of the n-th Fibonacci number would be merely the extraction of that element from the infinite list, forcing the evaluation of only the first n members of the list.
[1] [2] All functions use floating-point numbers in one manner or another. Different C standards provide different, albeit backwards-compatible, sets of functions. Most of these functions are also available in the C++ standard library, though in different headers (the C headers are included as well, but only as a deprecated compatibility feature).
Ramanujan summation is a technique invented by the mathematician Srinivasa Ramanujan for assigning a value to divergent infinite series.Although the Ramanujan summation of a divergent series is not a sum in the traditional sense, it has properties that make it mathematically useful in the study of divergent infinite series, for which conventional summation is undefined.
That is, it is a method for assigning a value to a series, different from the conventional method of taking limits of partial sums. Given a series Σa n, if its Euler transform converges to a sum, then that sum is called the Euler sum of the original series. As well as being used to define values for divergent series, Euler summation can be ...
The Fibonacci sequence is constant-recursive: each element of the sequence is the sum of the previous two. Hasse diagram of some subclasses of constant-recursive sequences, ordered by inclusion
A formal power series can be loosely thought of as an object that is like a polynomial, but with infinitely many terms.Alternatively, for those familiar with power series (or Taylor series), one may think of a formal power series as a power series in which we ignore questions of convergence by not assuming that the variable X denotes any numerical value (not even an unknown value).
A particular expression of interest which is formalized as the limit of a sequence is sums of infinite series. These are "infinite sums" of real numbers, generally written as =. This is defined through limits as follows: [12] given a sequence of real numbers {}, the sequence of partial sums is defined by = =.