enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Kernel (linear algebra) - Wikipedia

    en.wikipedia.org/wiki/Kernel_(linear_algebra)

    The left null space of A is the same as the kernel of A T. The left null space of A is the orthogonal complement to the column space of A, and is dual to the cokernel of the associated linear transformation. The kernel, the row space, the column space, and the left null space of A are the four fundamental subspaces associated with the matrix A.

  3. Jordan normal form - Wikipedia

    en.wikipedia.org/wiki/Jordan_normal_form

    The Jordan form is used to find a normal form of matrices up to conjugacy such that normal matrices make up an algebraic variety of a low fixed degree in the ambient matrix space. Sets of representatives of matrix conjugacy classes for Jordan normal form or rational canonical forms in general do not constitute linear or affine subspaces in the ...

  4. Row and column spaces - Wikipedia

    en.wikipedia.org/wiki/Row_and_column_spaces

    Also finding a basis for the column space of A is equivalent to finding a basis for the row space of the transpose matrix A T. To find the basis in a practical setting (e.g., for large matrices), the singular-value decomposition is typically used.

  5. Normal basis - Wikipedia

    en.wikipedia.org/wiki/Normal_basis

    The classical normal basis theorem states that there is an element such that {():} forms a basis of K, considered as a vector space over F. That is, any element α ∈ K {\displaystyle \alpha \in K} can be written uniquely as α = ∑ g ∈ G a g g ( β ) {\textstyle \alpha =\sum _{g\in G}a_{g}\,g(\beta )} for some elements a g ∈ F ...

  6. Basis (universal algebra) - Wikipedia

    en.wikipedia.org/wiki/Basis_(universal_algebra)

    When the space is zero-dimensional, its ordered basis is empty. Then, being the empty function, it is a present basis. Yet, since this space only contains the null vector and its only endomorphism is the identity, any function b from any set (even a nonempty one) to this singleton space works as a present basis. This is not so strange from the ...

  7. Basis (linear algebra) - Wikipedia

    en.wikipedia.org/wiki/Basis_(linear_algebra)

    A projective basis is + points in general position, in a projective space of dimension n. A convex basis of a polytope is the set of the vertices of its convex hull. A cone basis [5] consists of one point by edge of a polygonal cone. See also a Hilbert basis (linear programming).

  8. Free module - Wikipedia

    en.wikipedia.org/wiki/Free_module

    Every vector space is a free module, [1] but, if the ring of the coefficients is not a division ring (not a field in the commutative case), then there exist non-free modules. Given any set S and ring R, there is a free R-module with basis S, which is called the free module on S or module of formal R-linear combinations of the elements of S.

  9. Singular value decomposition - Wikipedia

    en.wikipedia.org/wiki/Singular_value_decomposition

    The first ⁠ ⁠ columns of ⁠ ⁠ are a basis of the column space of ⁠ ⁠ (the row space of ⁠ ⁠ in the real case). The last ⁠ n − r {\displaystyle n-r} ⁠ columns of ⁠ V {\displaystyle \mathbf {V} } ⁠ are a basis of the null space of ⁠ M {\displaystyle \mathbf {M} } ⁠ .