Search results
Results from the WOW.Com Content Network
Every prime number p divides a Fibonacci number that can be determined by the value of p modulo 5. If p is congruent to 1 or 4 modulo 5, then p divides F p−1, and if p is congruent to 2 or 3 modulo 5, then, p divides F p+1. The remaining case is that p = 5, and in this case p divides F p.
In mathematics, the Fibonacci numbers form a sequence defined recursively by: = {= = + > That is, after two starting values, each number is the sum of the two preceding numbers.
A prime divides if and only if p is congruent to ±1 modulo 5, and p divides + if and only if it is congruent to ±2 modulo 5. (For p = 5, F 5 = 5 so 5 divides F 5) . Fibonacci numbers that have a prime index p do not share any common divisors greater than 1 with the preceding Fibonacci numbers, due to the identity: [6]
Catalan's triangle, which counts strings of matched parentheses [2] Euler's triangle, which counts permutations with a given number of ascents [3] Floyd's triangle, whose entries are all of the integers in order [4] Hosoya's triangle, based on the Fibonacci numbers [5] Lozanić's triangle, used in the mathematics of chemical compounds [6]
To encode an integer N: . Find the largest Fibonacci number equal to or less than N; subtract this number from N, keeping track of the remainder.; If the number subtracted was the i th Fibonacci number F(i), put a 1 in place i − 2 in the code word (counting the left most digit as place 0).
Fibonacci was born around 1170 to Guglielmo, an Italian merchant and customs official. [3] Guglielmo directed a trading post in Bugia (Béjaïa), in modern-day Algeria. [16] Fibonacci travelled with him as a young boy, and it was in Bugia (Algeria) where he was educated that he learned about the Hindu–Arabic numeral system. [17] [7]
[4] [5] If an algorithm is designed so that it will break a problem into smaller subproblems (divide and conquer), its running time is described by a recurrence relation. A simple example is the time an algorithm takes to find an element in an ordered vector with n {\displaystyle n} elements, in the worst case.
Hosoya's triangle or the Hosoya triangle (originally Fibonacci triangle; OEIS: A058071) is a triangular arrangement of numbers (like Pascal's triangle) based on the Fibonacci numbers. Each number is the sum of the two numbers above in either the left diagonal or the right diagonal.