Search results
Results from the WOW.Com Content Network
Few results are known for the general G/G/k model as it generalises the M/G/k queue for which few metrics are known. Bounds can be computed using mean value analysis techniques, adapting results from the M/M/c queue model, using heavy traffic approximations, empirical results [8]: 189 [9] or approximating distributions by phase type distributions and then using matrix analytic methods to solve ...
where as above is the Laplace–Stieltjes transform of the service time distribution function. This relationship can only be solved exactly in special cases (such as the M/M/1 queue ), but for any s {\textstyle s} the value of ϕ ( s ) {\textstyle \phi (s)} can be calculated and by iteration with upper and lower bounds the distribution function ...
In queueing theory, a discipline within the mathematical theory of probability, a Markovian arrival process (MAP or MArP [1]) is a mathematical model for the time between job arrivals to a system. The simplest such process is a Poisson process where the time between each arrival is exponentially distributed. [2] [3]
The response time is the amount of time a job spends in the system from the instant of arrival to the time they leave the system. A consistent and asymptotically normal estimator for the mean response time, can be computed as the fixed point of an empirical Laplace transform. [5]
A M/M/1 queue means that the time between arrivals is Markovian (M), i.e. the inter-arrival time follows an exponential distribution of parameter λ. The second M means that the service time is Markovian: it follows an exponential distribution of parameter μ. The last parameter is the number of service channel which one (1).
In queueing theory, a discipline within the mathematical theory of probability, a rational arrival process (RAP) is a mathematical model for the time between job arrivals to a system. It extends the concept of a Markov arrival process , allowing for dependent matrix-exponential distributed inter-arrival times.
The average response time or sojourn time (total time a customer spends in the system) does not depend on scheduling discipline and can be computed using Little's law as 1/(μ − λ). The average time spent waiting is 1/(μ − λ) − 1/μ = ρ/(μ − λ). The distribution of response times experienced does depend on scheduling discipline.
The matrix geometric method and matrix analytic methods have allowed queues with phase-type distributed inter-arrival and service time distributions to be considered. [18] Systems with coupled orbits are an important part in queueing theory in the application to wireless networks and signal processing. [19]