Search results
Results from the WOW.Com Content Network
In contrast, Pluto's orbit is moderately inclined relative to the ecliptic (over 17°) and moderately eccentric (elliptical). This eccentricity means a small region of Pluto's orbit lies closer to the Sun than Neptune's. The Pluto–Charon barycenter came to perihelion on September 5, 1989, [4] [l] and was last closer to the Sun than Neptune ...
The orbital period (also revolution period) is the amount of time a given astronomical object takes to complete one orbit around another object. In astronomy, it usually applies to planets or asteroids orbiting the Sun, moons orbiting planets, exoplanets orbiting other stars, or binary stars.
McNaught has a hyperbolic orbit but within the influence of the inner planets, [9] is still bound to the Sun with an orbital period of about 10 5 years. [3] Comet C/1980 E1 has the largest eccentricity of any known hyperbolic comet of solar origin with an eccentricity of 1.057, [ 10 ] and will eventually leave the Solar System.
An orbit will be Sun-synchronous when the precession rate ρ = dΩ / dt equals the mean motion of the Earth about the Sun n E, which is 360° per sidereal year (1.990 968 71 × 10 −7 rad/s), so we must set n E = ΔΩ E / T E = ρ = ΔΩ / T , where T E is the Earth orbital period, while T is the period of the spacecraft ...
Planet orbiting the Sun in a circular orbit (e=0.0) Planet orbiting the Sun in an orbit with e=0.5 Planet orbiting the Sun in an orbit with e=0.2 Planet orbiting the Sun in an orbit with e=0.8 The red ray rotates at a constant angular velocity and with the same orbital time period as the planet, =. S: Sun at the primary focus, C: Centre of ...
Rotation period with respect to distant stars, the sidereal rotation period (compared to Earth's mean Solar days) Synodic rotation period (mean Solar day) Apparent rotational period viewed from Earth Sun [i] 25.379995 days (Carrington rotation) 35 days (high latitude) 25 d 9 h 7 m 11.6 s 35 d ~28 days (equatorial) [2] Mercury: 58.6462 days [3 ...
A synchronous orbit is an orbit in which an orbiting body (usually a satellite) has a period equal to the average rotational period of the body being orbited (usually a planet), and in the same direction of rotation as that body.
Here, the ratio of the rotation period of a body to its own orbital period is some simple fraction different from 1:1. A well known case is the rotation of Mercury, which is locked to its own orbit around the Sun in a 3:2 resonance. [2] This results in the rotation speed roughly matching the orbital speed around perihelion. [14]