Search results
Results from the WOW.Com Content Network
The Mars time of noon is 12:00 which is in Earth time 12 hours and 20 minutes after midnight. For the Mars Pathfinder, Mars Exploration Rover (MER), Phoenix, and Mars Science Laboratory missions, the operations teams have worked on "Mars time", with a work schedule synchronized to the local time at the landing site on Mars, rather than the ...
The average duration of the day-night cycle on Mars — i.e., a Martian day — is 24 hours, 39 minutes and 35.244 seconds, [3] equivalent to 1.02749125 Earth days. [4] The sidereal rotational period of Mars—its rotation compared to the fixed stars—is 24 hours, 37 minutes and 22.66 seconds. [4]
This template, {}, calculates an Earth date and time that correspond to a given day and time on Mars for an event in the NASA Mars 2020 mission of the Perseverance rover and Ingenuity helicopter. The result is shown as a standard calendar date and 24-hour clock time in Coordinated Universal Time (UTC, previously known as GMT ).
In astronomy, the rotation period or spin period [1] of a celestial object (e.g., star, planet, moon, asteroid) has two definitions. The first one corresponds to the sidereal rotation period (or sidereal day), i.e., the time that the object takes to complete a full rotation around its axis relative to the background stars (inertial space).
Viewed from the same location, a star seen at one position in the sky will be seen at the same position on another night at the same time of day (or night), if the day is defined as a sidereal day (also known as the sidereal rotation period). This is similar to how the time kept by a sundial can be used to find the location of the Sun.
The basic time periods from which the calendar is constructed are the Martian solar day (sometimes called a sol) and the Martian vernal equinox year.The sol is 39 minutes 35.244 seconds longer than the Terrestrial solar day, and the Martian vernal equinox year is 668.5907 sols in length (which corresponds to 686.9711 days on Earth).
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
T = rotational period of the body = Radius of orbit. By this formula one can find the stationary orbit of an object in relation to a given body. Orbital speed (how fast a satellite is moving through space) is calculated by multiplying the angular speed of the satellite by the orbital radius. [3]