enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Natural number - Wikipedia

    en.wikipedia.org/wiki/Natural_number

    With this definition each nonzero natural number is a singleton set. So, the property of the natural numbers to represent cardinalities is not directly accessible; only the ordinal property (being the n th element of a sequence) is immediate. Unlike von Neumann's construction, the Zermelo ordinals do not extend to infinite ordinals.

  3. Set-theoretic definition of natural numbers - Wikipedia

    en.wikipedia.org/wiki/Set-theoretic_definition...

    The definition of a finite set is given independently of natural numbers: [3] Definition: A set is finite if and only if any non empty family of its subsets has a minimal element for the inclusion order. Definition: a cardinal n is a natural number if and only if there exists a finite set of which the cardinal is n. 0 = Card (∅)

  4. List of types of numbers - Wikipedia

    en.wikipedia.org/wiki/List_of_types_of_numbers

    Such a number is algebraic and can be expressed as the sum of a rational number and the square root of a rational number. Constructible number: A number representing a length that can be constructed using a compass and straightedge. Constructible numbers form a subfield of the field of algebraic numbers, and include the quadratic surds.

  5. Number - Wikipedia

    en.wikipedia.org/wiki/Number

    In this base 10 system, the rightmost digit of a natural number has a place value of 1, and every other digit has a place value ten times that of the place value of the digit to its right. In set theory, which is capable of acting as an axiomatic foundation for modern mathematics, [35] natural numbers can be represented by classes of equivalent ...

  6. Well-ordering principle - Wikipedia

    en.wikipedia.org/wiki/Well-ordering_principle

    Considering the natural numbers as a subset of the real numbers, and assuming that we know already that the real numbers are complete (again, either as an axiom or a theorem about the real number system), i.e., every bounded (from below) set has an infimum, then also every set of natural numbers has an infimum, say .

  7. Natural density - Wikipedia

    en.wikipedia.org/wiki/Natural_density

    A subset A of positive integers has natural density α if the proportion of elements of A among all natural numbers from 1 to n converges to α as n tends to infinity.. More explicitly, if one defines for any natural number n the counting function a(n) as the number of elements of A less than or equal to n, then the natural density of A being α exactly means that [1]

  8. Foundations of mathematics - Wikipedia

    en.wikipedia.org/wiki/Foundations_of_mathematics

    The Pythagorean school of mathematics originally insisted that the only numbers are natural numbers and ratios of natural numbers. The discovery (around 5th century BC) that the ratio of the diagonal of a square to its side is not the ratio of two natural numbers was a shock to them which they only reluctantly accepted.

  9. Proofs involving the addition of natural numbers - Wikipedia

    en.wikipedia.org/wiki/Proofs_involving_the...

    We prove associativity by first fixing natural numbers a and b and applying induction on the natural number c. For the base case c = 0, (a + b) + 0 = a + b = a + (b + 0) Each equation follows by definition [A1]; the first with a + b, the second with b. Now, for the induction. We assume the induction hypothesis, namely we assume that for some ...