enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Grid method multiplication - Wikipedia

    en.wikipedia.org/wiki/Grid_method_multiplication

    Compared to traditional long multiplication, the grid method differs in clearly breaking the multiplication and addition into two steps, and in being less dependent on place value. Whilst less efficient than the traditional method, grid multiplication is considered to be more reliable , in that children are less likely to make mistakes.

  3. Multiplicative order - Wikipedia

    en.wikipedia.org/wiki/Multiplicative_order

    In number theory, given a positive integer n and an integer a coprime to n, the multiplicative order of a modulo n is the smallest positive integer k such that (). [ 1 ] In other words, the multiplicative order of a modulo n is the order of a in the multiplicative group of the units in the ring of the integers modulo n .

  4. Multiplication algorithm - Wikipedia

    en.wikipedia.org/wiki/Multiplication_algorithm

    First multiply the quarters by 47, the result 94 is written into the first workspace. Next, multiply cwt 12*47 = (2 + 10)*47 but don't add up the partial results (94, 470) yet. Likewise multiply 23 by 47 yielding (141, 940). The quarters column is totaled and the result placed in the second workspace (a trivial move in this case).

  5. Montgomery modular multiplication - Wikipedia

    en.wikipedia.org/wiki/Montgomery_modular...

    A straightforward algorithm to multiply numbers in Montgomery form is therefore to multiply aR mod N, bR mod N, and R′ as integers and reduce modulo N. For example, to multiply 7 and 15 modulo 17 in Montgomery form, again with R = 100, compute the product of 3 and 4 to get 12 as above.

  6. Multiplication - Wikipedia

    en.wikipedia.org/wiki/Multiplication

    Order preservation Multiplication by a positive number preserves the order: For a > 0, if b > c, then ab > ac. Multiplication by a negative number reverses the order: For a < 0, if b > c, then ab < ac. The complex numbers do not have an ordering that is compatible with both addition and multiplication. [30]

  7. Order of operations - Wikipedia

    en.wikipedia.org/wiki/Order_of_operations

    Order of operations. In mathematics and computer programming, the order of operations is a collection of rules that reflect conventions about which operations to perform first in order to evaluate a given mathematical expression. These rules are formalized with a ranking of the operations.

  8. Calculator input methods - Wikipedia

    en.wikipedia.org/wiki/Calculator_input_methods

    Infix notation is a method similar to immediate execution with AESH and/or AESP, but unary operations are input into the calculator in the same order as they are written on paper. Calculators that use infix notation tend to incorporate a dot-matrix display to display the expression being entered, frequently accompanied by a seven-segment ...

  9. Mental calculation - Wikipedia

    en.wikipedia.org/wiki/Mental_calculation

    Since 9 = 10 − 1, to multiply a number by nine, multiply it by 10 and then subtract the original number from the result. For example, 9 × 27 = 270 − 27 = 243. This method can be adjusted to multiply by eight instead of nine, by doubling the number being subtracted; 8 × 27 = 270 − (2×27) = 270 − 54 = 216.