Search results
Results from the WOW.Com Content Network
Figures 2-5 further illustrate construction of Bode plots. This example with both a pole and a zero shows how to use superposition. To begin, the components are presented separately. Figure 2 shows the Bode magnitude plot for a zero and a low-pass pole, and compares the two with the Bode straight line plots.
In the middle of the 20th century, Bode proposed the first idea involving the use of fractional-order controllers in a feedback problem by what is known as Bode's ideal transfer function. Bode proposed that the ideal shape of the Nyquist plot for the open loop frequency response is a straight line in the complex plane, which provides ...
In this case a point that is neither a pole nor a zero is viewed as a pole (or zero) of order 0. A meromorphic function may have infinitely many zeros and poles. This is the case for the gamma function (see the image in the infobox), which is meromorphic in the whole complex plane, and has a simple pole at every non-positive integer.
The root locus plots the poles of the closed loop transfer function in the complex s-plane as a function of a gain parameter (see pole–zero plot). Evans also invented in 1948 an analog computer to compute root loci, called a "Spirule" (after "spiral" and "slide rule"); it found wide use before the advent of digital computers.
Because () is a minimum, the first derivative evaluated at must be zero, so the linear term drops out: = + ″ () + (). The constant term V ( x 0 ) is arbitrary and thus may be dropped, and a coordinate transformation allows the form of the simple harmonic oscillator to be retrieved: V ( x ) ≈ 1 2 V ″ ( 0 ) ⋅ x 2 = 1 2 k x 2 ...
A system with a pole at the origin is also marginally stable but in this case there will be no oscillation in the response as the imaginary part is also zero (jw = 0 means w = 0 rad/sec). An example of such a system is a mass on a surface with friction. When a sidewards impulse is applied, the mass will move and never returns to zero.
The Nyquist plot for () = + + with s = jω.. In control theory and stability theory, the Nyquist stability criterion or Strecker–Nyquist stability criterion, independently discovered by the German electrical engineer Felix Strecker [] at Siemens in 1930 [1] [2] [3] and the Swedish-American electrical engineer Harry Nyquist at Bell Telephone Laboratories in 1932, [4] is a graphical technique ...
The Bode plot of a first-order low-pass filter. The frequency response of the Butterworth filter is maximally flat (i.e., has no ripples) in the passband and rolls off towards zero in the stopband. [2] When viewed on a logarithmic Bode plot, the response slopes off linearly towards negative