Search results
Results from the WOW.Com Content Network
This is a list of well-known dimensionless quantities illustrating their variety of forms and applications. The tables also include pure numbers, dimensionless ratios, or dimensionless physical constants; these topics are discussed in the article.
Dimensionless quantities, or quantities of dimension one, [1] are quantities implicitly defined in a manner that prevents their aggregation into units of measurement. [ 2 ] [ 3 ] Typically expressed as ratios that align with another system, these quantities do not necessitate explicitly defined units .
Definition of the Lorentz factor γ. The Lorentz factor or Lorentz term (also known as the gamma factor [1]) is a dimensionless quantity expressing how much the measurements of time, length, and other physical properties change for an object while it moves.
A quantity of dimension one is historically known as a dimensionless quantity (a term that is still commonly used); all its dimensional exponents are zero and its dimension symbol is . Such a quantity can be regarded as a derived quantity in the form of the ratio of two quantities of the same dimension.
Pages in category "Dimensionless quantities" The following 9 pages are in this category, out of 9 total. ... Rotation (quantity) This page was last ...
Although named for Edgar Buckingham, the π theorem was first proved by the French mathematician Joseph Bertrand in 1878. [1] Bertrand considered only special cases of problems from electrodynamics and heat conduction, but his article contains, in distinct terms, all the basic ideas of the modern proof of the theorem and clearly indicates the theorem's utility for modelling physical phenomena.
Absorbance is a dimensionless quantity. Nevertheless, the absorbance unit or AU is commonly used in ultraviolet–visible spectroscopy and its high-performance liquid chromatography applications, often in derived units such as the milli-absorbance unit (mAU) or milli-absorbance unit-minutes (mAU×min), a unit of absorbance integrated over time.
The Knudsen number is a dimensionless number defined as =, where = mean free path [L 1], = representative physical length scale [L 1].. The representative length scale considered, , may correspond to various physical traits of a system, but most commonly relates to a gap length over which thermal transport or mass transport occurs through a gas phase.