enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. List of orbits - Wikipedia

    en.wikipedia.org/wiki/List_of_orbits

    Orbits around the L 1 point are used by spacecraft that want a constant view of the Sun, such as the Solar and Heliospheric Observatory. Orbits around L 2 are used by missions that always want both Earth and the Sun behind them. This enables a single shield to block radiation from both Earth and the Sun, allowing passive cooling of sensitive ...

  3. Newton's theorem of revolving orbits - Wikipedia

    en.wikipedia.org/wiki/Newton's_theorem_of...

    The red planet is stationary; the force F(r) is balanced by a repulsive inverse-cube force. A GIF version of this animation is found here. Figure 2: The radius r of the green and blue planets are the same, but their angular speed differs by a factor k. Examples of such orbits are shown in Figures 1 and 3–5.

  4. Kepler's laws of planetary motion - Wikipedia

    en.wikipedia.org/wiki/Kepler's_laws_of_planetary...

    The elliptical orbits of planets were indicated by calculations of the orbit of Mars. From this, Kepler inferred that other bodies in the Solar System, including those farther away from the Sun, also have elliptical orbits. The second law establishes that when a planet is closer to the Sun, it travels faster.

  5. Orbit - Wikipedia

    en.wikipedia.org/wiki/Orbit

    An animation showing a low eccentricity orbit (near-circle, in red), and a high eccentricity orbit (ellipse, in purple). In celestial mechanics, an orbit (also known as orbital revolution) is the curved trajectory of an object [1] such as the trajectory of a planet around a star, or of a natural satellite around a planet, or of an artificial satellite around an object or position in space such ...

  6. Orbital elements - Wikipedia

    en.wikipedia.org/wiki/Orbital_elements

    Real orbits have perturbations, so a given set of Keplerian elements accurately describes an orbit only at the epoch. Evolution of the orbital elements takes place due to the gravitational pull of bodies other than the primary, the nonsphericity of the primary, atmospheric drag , relativistic effects , radiation pressure , electromagnetic ...

  7. Orbital mechanics - Wikipedia

    en.wikipedia.org/wiki/Orbital_mechanics

    The specific example discussed is of a satellite orbiting a planet, but the rules of thumb could also apply to other situations, such as orbits of small bodies around a star such as the Sun. Kepler's laws of planetary motion: Orbits are elliptical, with the heavier body at one focus of the ellipse. A special case of this is a circular orbit (a ...

  8. Retrograde and prograde motion - Wikipedia

    en.wikipedia.org/wiki/Retrograde_and_prograde_motion

    Most of the material orbits and rotates in one direction. This uniformity of motion is due to the collapse of a gas cloud. [1] The nature of the collapse is explained by conservation of angular momentum. In 2010 the discovery of several hot Jupiters with backward orbits called into question the theories about the formation of planetary systems. [2]

  9. Orbital inclination - Wikipedia

    en.wikipedia.org/wiki/Orbital_inclination

    For a satellite orbiting a planet, the plane of reference is usually the plane containing the planet's equator. For planets in the Solar System, the plane of reference is usually the ecliptic, the plane in which the Earth orbits the Sun. [1] [2] This reference plane is most practical for Earth-based observers. Therefore, Earth's inclination is ...