enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Equations of motion - Wikipedia

    en.wikipedia.org/wiki/Equations_of_motion

    There are two main descriptions of motion: dynamics and kinematics.Dynamics is general, since the momenta, forces and energy of the particles are taken into account. In this instance, sometimes the term dynamics refers to the differential equations that the system satisfies (e.g., Newton's second law or Euler–Lagrange equations), and sometimes to the solutions to those equations.

  3. Fourth, fifth, and sixth derivatives of position - Wikipedia

    en.wikipedia.org/wiki/Fourth,_fifth,_and_sixth...

    Snap, [6] or jounce, [2] is the fourth derivative of the position vector with respect to time, or the rate of change of the jerk with respect to time. [4] Equivalently, it is the second derivative of acceleration or the third derivative of velocity, and is defined by any of the following equivalent expressions: = ȷ = = =.

  4. Acceleration - Wikipedia

    en.wikipedia.org/wiki/Acceleration

    Since in uniform motion the velocity in the tangential direction does not change, the acceleration must be in radial direction, pointing to the center of the circle. This acceleration constantly changes the direction of the velocity to be tangent in the neighbouring point, thereby rotating the velocity vector along the circle.

  5. Circular motion - Wikipedia

    en.wikipedia.org/wiki/Circular_motion

    Velocity and acceleration in non-uniform circular motion. In non-uniform circular motion, an object moves in a circular path with varying speed. Since the speed is changing, there is tangential acceleration in addition to normal acceleration. The net acceleration is directed towards the interior of the circle (but does not pass through its center).

  6. Motion graphs and derivatives - Wikipedia

    en.wikipedia.org/wiki/Motion_graphs_and_derivatives

    Its slope is the acceleration at that point. In mechanics, the derivative of the position vs. time graph of an object is equal to the velocity of the object. In the International System of Units, the position of the moving object is measured in meters relative to the origin, while the time is measured in seconds.

  7. Motion - Wikipedia

    en.wikipedia.org/wiki/Motion

    In physics, motion is when an object changes its position with respect to a reference point in a given time. Motion is mathematically described in terms of displacement , distance , velocity , acceleration , speed , and frame of reference to an observer, measuring the change in position of the body relative to that frame with a change in time.

  8. Proper velocity - Wikipedia

    en.wikipedia.org/wiki/Proper_velocity

    Proper acceleration at any speed is the physical acceleration experienced locally by an object. In spacetime it is a three-vector acceleration with respect to the object's instantaneously varying free-float frame. [13] Its magnitude α is the frame-invariant magnitude of that object's four-acceleration. Proper acceleration is also useful from ...

  9. Trajectory - Wikipedia

    en.wikipedia.org/wiki/Trajectory

    1 Physics of trajectories. ... (see e.g. Poincaré map). ... This is the mathematical form of Newton's second law of motion: force equals mass times acceleration, ...