Search results
Results from the WOW.Com Content Network
The global electromagnetic resonance phenomenon is named after physicist Winfried Otto Schumann who predicted it mathematically in 1952. Schumann resonances are the principal background in the part of the electromagnetic spectrum [2] from 3 Hz through 60 Hz [3] and appear as distinct peaks at extremely low frequencies around 7.83 Hz (fundamental), 14.3, 20.8, 27.3, and 33.8 Hz.
The fundamental Schumann resonance is at approximately 7.83 Hz, the frequency at which the wavelength equals the circumference of the Earth, and higher harmonics occur at 14.1, 20.3, 26.4, and 32.4 Hz, etc. Lightning strikes excite these resonances, causing the Earth–ionosphere cavity to "ring" like a bell, resulting in a peak in the noise ...
The Schumann resonances are a set of spectrum peaks in the extremely low frequency (ELF) portion of the Earth's electromagnetic field spectrum. Schumann resonance is due to the space between the surface of the Earth and the conductive ionosphere acting as a waveguide. The limited dimensions of the earth cause this waveguide to act as a resonant ...
Extremely low frequency (ELF) (< 3 kHz) and very low frequency (VLF) (3–30 kHz) signals can propagate efficiently in this waveguide. For instance, lightning strikes launch a signal called radio atmospherics , which can travel many thousands of kilometers, because they are confined between the Earth and the ionosphere.
Winfried Otto Schumann (May 20, 1888 – September 22, 1974) was a German physicist and electrical engineer who predicted the Schumann resonances, a series of low-frequency resonances caused by lightning discharges in the atmosphere.
So the resonant frequencies of resonators, called normal modes, are equally spaced multiples of a lowest frequency called the fundamental frequency. The above analysis assumes the medium inside the resonator is homogeneous, so the waves travel at a constant speed, and that the shape of the resonator is rectilinear.
"The average fundamental mode of resonance is around 7.8 Hz, and the rest of modes are 14, 20, 26, 33, 39, and 45 Hz with slight diurnal variation." However, the wiki article's /*Description*/ currently says they "appear as distinct peaks at extremely low frequencies around 7.83 Hz (fundamental), 14.3, 20.8, 27.3, and 33.8 Hz" yet cites that ...
A frequency vs. time plot (spectrogram) showing several whistler signals amidst a background of sferics as received at Palmer Station, Antarctica on August 24, 2005.A radio atmospheric signal or sferic (sometimes also spelled "spheric") is a broadband electromagnetic impulse that occurs as a result of natural atmospheric lightning discharges.