enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Acceleration - Wikipedia

    en.wikipedia.org/wiki/Acceleration

    Acceleration is the rate of change of velocity. At any point on a trajectory, the magnitude of the acceleration is given by the rate of change of velocity in both magnitude and direction at that point. The true acceleration at time t is found in the limit as time interval Δt → 0 of Δv/Δt.

  3. Fourth, fifth, and sixth derivatives of position - Wikipedia

    en.wikipedia.org/wiki/Fourth,_fifth,_and_sixth...

    Snap, [6] or jounce, [2] is the fourth derivative of the position vector with respect to time, or the rate of change of the jerk with respect to time. [4] Equivalently, it is the second derivative of acceleration or the third derivative of velocity, and is defined by any of the following equivalent expressions: = ȷ = = =.

  4. Jerk (physics) - Wikipedia

    en.wikipedia.org/wiki/Jerk_(physics)

    Recall that in constant-speed motion along an arc, acceleration is zero in the tangential direction and nonzero in the inward normal direction. Transition curves gradually increase the curvature and, consequently, the centripetal acceleration.

  5. Newton's laws of motion - Wikipedia

    en.wikipedia.org/wiki/Newton's_laws_of_motion

    A body remains at rest, or in motion at a constant speed in a straight line, except insofar as it is acted upon by a force. At any instant of time, the net force on a body is equal to the body's acceleration multiplied by its mass or, equivalently, the rate at which the body's momentum is changing with time.

  6. Linear motion - Wikipedia

    en.wikipedia.org/wiki/Linear_motion

    The linear motion can be of two types: uniform linear motion, with constant velocity (zero acceleration); and non-uniform linear motion, with variable velocity (non-zero acceleration). The motion of a particle (a point-like object) along a line can be described by its position x {\displaystyle x} , which varies with t {\displaystyle t} (time).

  7. Terminal velocity - Wikipedia

    en.wikipedia.org/wiki/Terminal_velocity

    Since the net force on the object is zero, the object has zero acceleration. [1] [2] ... The equation of motion for creeping ... corresponding to the rate of rising ...

  8. Inertial frame of reference - Wikipedia

    en.wikipedia.org/wiki/Inertial_frame_of_reference

    All frames of reference with zero acceleration are in a state of constant rectilinear motion (straight-line motion) with respect to one another. In such a frame, an object with zero net force acting on it, is perceived to move with a constant velocity, or, equivalently, Newton's first law of motion holds. Such frames are known as inertial.

  9. Proper acceleration - Wikipedia

    en.wikipedia.org/wiki/Proper_acceleration

    In the standard inertial coordinates of special relativity, for unidirectional motion, proper acceleration is the rate of change of proper velocity with respect to coordinate time. In an inertial frame in which the object is momentarily at rest, the proper acceleration 3-vector, combined with a zero time-component, yields the object's four ...