Search results
Results from the WOW.Com Content Network
Classical mechanics utilises many equations—as well as other mathematical concepts—which relate various physical quantities to one another. These include differential equations, manifolds, Lie groups, and ergodic theory. [4] This article gives a summary of the most important of these.
There are two main descriptions of motion: dynamics and kinematics.Dynamics is general, since the momenta, forces and energy of the particles are taken into account. In this instance, sometimes the term dynamics refers to the differential equations that the system satisfies (e.g., Newton's second law or Euler–Lagrange equations), and sometimes to the solutions to those equations.
[5] The terms kinetic energy and work in their present scientific meanings date back to the mid-19th century. Early understandings of these ideas can be attributed to Thomas Young, who in his 1802 lecture to the Royal Society, was the first to use the term energy to refer to kinetic energy in its modern sense, instead of vis viva.
Snap, [6] or jounce, [2] is the fourth derivative of the position vector with respect to time, or the rate of change of the jerk with respect to time. [4] Equivalently, it is the second derivative of acceleration or the third derivative of velocity, and is defined by any of the following equivalent expressions: = ȷ = = =.
The first equation shows that, after one second, an object will have fallen a distance of 1/2 × 9.8 × 1 2 = 4.9 m. After two seconds it will have fallen 1/2 × 9.8 × 2 2 = 19.6 m; and so on. On the other hand, the penultimate equation becomes grossly inaccurate at great distances.
d is the total horizontal distance travelled by the projectile. v is the velocity at which the projectile is launched g is the gravitational acceleration —usually taken to be 9.81 m/s 2 (32 f/s 2 ) near the Earth's surface
Using the arc length formula above, this equation can be rewritten in terms of dθ / dt : = =, =, where h is the vertical distance the pendulum fell. Look at Figure 2, which presents the trigonometry of a simple pendulum.
In the differential form formulation on arbitrary space times, F = 1 / 2 F αβ dx α ∧ dx β is the electromagnetic tensor considered as a 2-form, A = A α dx α is the potential 1-form, = is the current 3-form, d is the exterior derivative, and is the Hodge star on forms defined (up to its orientation, i.e. its sign) by the ...