Search results
Results from the WOW.Com Content Network
Proton-exchange membrane fuel cells (PEMFC), also known as polymer electrolyte membrane (PEM) fuel cells, are a type of fuel cell being developed mainly for transport applications, as well as for stationary fuel-cell applications and portable fuel-cell applications. Their distinguishing features include lower temperature/pressure ranges (50 to ...
Whereas the common PEM fuel cell, also called Low Temperature Proton Exchange Membrane fuel cell (LT-PEM), must usually be operated with hydrogen with high purity of more than 99.9 % the HT-PEM fuel cell is less sensitive to impurities and thus is typically operated with reformate gas with hydrogen concentration of about 50 to 75 %.
These fuel cells have a wide variety of commercial and military applications including in the aerospace, automotive, and energy industries. [9] [16] Early PEM fuel cell applications were focused within the aerospace industry. The then-higher capacity of fuel cells compared to batteries made them ideal as NASA's Project Gemini began to target ...
Fuel cells are classified by the type of electrolyte they use and by the difference in start-up time ranging from 1 second for proton-exchange membrane fuel cells (PEM fuel cells, or PEMFC) to 10 minutes for solid oxide fuel cells (SOFC). A related technology is flow batteries, in which the fuel can be regenerated by recharging.
Ruthenium and platinum are often used together, if carbon monoxide (CO) is a product of the electro-chemical reaction as CO poisons the PEM and impacts the efficiency of the fuel cell. Due to the high cost of these and other similar materials, research is being undertaken to develop catalysts that use lower cost materials as the high costs are ...
PEM water electrolysis technology is similar to PEM fuel cell technology, where solid poly-sulfonated membranes, such as nafion, fumapem, were used as a electrolyte (proton conductor). [ 11 ] A thorough review of the historical performance from the early research to that of today can be found in chronological order with many of the operating ...
Direct methanol fuel cell. Direct methanol fuel cells or DMFCs are a subcategory of proton-exchange membrane fuel cells in which methanol is used as the fuel and a special proton-conducting polymer as the membrane (PEM). Their main advantage is low temperature operation and the ease of transport of methanol, an energy-dense yet reasonably ...
A fuel cell is an electrochemical energy conversion device. Fuel cells differ from batteries in that they are designed for continuous replenishment of the reactants consumed. This is a partial list of companies currently producing commercially available fuel cell systems for use in residential, commercial, or industrial settings.