Search results
Results from the WOW.Com Content Network
Un-repaired DNA damages accumulate in non-replicating cells, such as cells in the brains or muscles of adult mammals, and can cause aging. [3] [4] [5] (Also see DNA damage theory of aging.) In replicating cells, such as cells lining the colon, errors occur upon replication of past damages in the template strand of DNA or during repair of DNA ...
The replication fork consists of a group of proteins that influence the activity of DNA replication. In order for the replication fork to stall, the cell must possess a certain number of stalled forks and arrest length. The replication fork is specifically paused due to the stalling of helicase and polymerase activity, which are linked together ...
Progress of replication forks is inhibited by many factors; collision with proteins or with complexes binding strongly on DNA, deficiency of dNTPs, nicks on template DNAs and so on. If replication forks get stuck and the rest of the sequences from the stuck forks are not copied, then the daughter strands get nick nick unreplicated sites.
The replication crisis is frequently discussed in relation to psychology and medicine, where considerable efforts have been undertaken to reinvestigate classic results, to determine whether they are reliable, and if they turn out not to be, the reasons for the failure.
A different mechanism, based on break-induced replication, has been proposed for large scale CAG repeats and can also occur in non-dividing cells. [27] At first, this mechanism follows the same process as the small scale strand slippage mechanism until replication fork reversal. [27]
The reason non-reciprocal translocations are dangerous is the possibility of producing a dicentric chromosome – a chromosome with two centromeres. When dicentric chromosomes form, a series of events can occur called a breakage-fusion-bridge cycle : Spindle fibers attach onto both centromeres in different locations on the chromosome, thereby ...
Eukaryotic DNA replication. Eukaryotic DNA replication is a conserved mechanism that restricts DNA replication to once per cell cycle. Eukaryotic DNA replication of chromosomal DNA is central for the duplication of a cell and is necessary for the maintenance of the eukaryotic genome.
DNA replication machinery is therefore highly controlled in order to prevent collapse when encountering damage. [2] Control of the DNA replication system ensures that the genome is replicated only once per cycle; over-replication induces DNA damage. Deregulation of DNA replication is a key factor in genomic instability during cancer development ...