enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Microfibril - Wikipedia

    en.wikipedia.org/wiki/Microfibril

    Cellulose inside plants is one of the examples of non-protein compounds that are using this term with the same purpose. Cellulose microfibrils are laid down in the inner surface of the primary cell wall. As the cell absorbs water, its volume increases and the existing microfibrils separate and new ones are formed to help increase cell strength.

  3. Fibril - Wikipedia

    en.wikipedia.org/wiki/Fibril

    Cellulose microfibrils are unique matrix macromolecules, in that they are assembled by cellulose synthase enzymes located on the extracellular surface of the plasma membrane. [17] It is believed that the plant can “anticipate their future morphology by controlling the orientation of microfibrils” by a mechanism where cellulose microfibrils ...

  4. Secondary cell wall - Wikipedia

    en.wikipedia.org/wiki/Secondary_cell_wall

    It sometimes consists of three distinct layers - S 1, S 2 and S 3 - where the direction of the cellulose microfibrils differs between the layers. [1] The direction of the microfibrils is called microfibril angle (MFA). In the secondary cell wall of fibres of trees a low microfibril angle is found in the S2-layer, while S1 and S3-layers show a ...

  5. Cell wall - Wikipedia

    en.wikipedia.org/wiki/Cell_wall

    However, the primary cell wall, can be defined as composed of cellulose microfibrils aligned at all angles. Cellulose microfibrils are produced at the plasma membrane by the cellulose synthase complex, which is proposed to be made of a hexameric rosette that contains three cellulose synthase catalytic subunits for each of the six units. [25]

  6. Cellulose synthase (UDP-forming) - Wikipedia

    en.wikipedia.org/wiki/Cellulose_synthase_(UDP...

    Cellulose microfibrils are made on the surface of cell membranes to reinforce cells walls, which has been researched extensively by plant biochemists and cell biologist because 1) they regulate cellular morphogenesis and 2) they serve alongside many other constituents (i.e. lignin, hemicellulose, pectin) in the cell wall as a strong structural support and cell shape. [15]

  7. Fibrillin - Wikipedia

    en.wikipedia.org/wiki/Fibrillin

    Fibrillin-1 is a major component of the microfibrils that form a sheath surrounding the amorphous elastin. It is believed that the microfibrils are composed of end-to-end polymers of fibrillin. To date, 3 forms of fibrillin have been described.

  8. Fibrillin-1 - Wikipedia

    en.wikipedia.org/wiki/Fibrillin-1

    The FBN-1 gene is involved in a variety of embryonic developmental programs. The microfibrils that are made from fibrillin-1 contribute to both elastic and non-elastic structures. The formation of the elastic fibers in the heart valves and the aorta require the involvement of both FBN-1 and FBN-2. [10]

  9. Hemicellulose - Wikipedia

    en.wikipedia.org/wiki/Hemicellulose

    Hemicellulose interacts with the cellulose by providing cross-linking of cellulose microfibrils: hemicellulose will search for voids in the cell wall during its formation and provide support around cellulose fibrils in order to equip the cell wall with the maximum possible strength it can provide. [6]