Search results
Results from the WOW.Com Content Network
In probability theory and statistics, the exponential distribution or negative exponential distribution is the probability distribution of the distance between events in a Poisson point process, i.e., a process in which events occur continuously and independently at a constant average rate; the distance parameter could be any meaningful mono-dimensional measure of the process, such as time ...
Cumulative distribution function for the exponential distribution Cumulative distribution function for the normal distribution. In probability theory and statistics, the cumulative distribution function (CDF) of a real-valued random variable, or just distribution function of , evaluated at , is the probability that will take a value less than or equal to .
The Dagum distribution; The exponential distribution, which describes the time between consecutive rare random events in a process with no memory. The exponential-logarithmic distribution; The F-distribution, which is the distribution of the ratio of two (normalized) chi-squared-distributed random variables, used in the analysis of variance.
The cumulative distribution function (shown as F(x)) gives the p values as a function of the q values. The quantile function does the opposite: it gives the q values as a function of the p values. Note that the portion of F ( x ) in red is a horizontal line segment.
Both formulas are obtained by inversion of the cdf. In Matlab Statistics Toolbox, you can easily use "gprnd" command to generate generalized Pareto random numbers. GPD as an Exponential-Gamma Mixture
Inverse transform sampling (also known as inversion sampling, the inverse probability integral transform, the inverse transformation method, or the Smirnov transform) is a basic method for pseudo-random number sampling, i.e., for generating sample numbers at random from any probability distribution given its cumulative distribution function.
Its cumulative distribution function is the logistic function, which appears in logistic regression and feedforward neural networks. It resembles the normal distribution in shape but has heavier tails (higher kurtosis). The logistic distribution is a special case of the Tukey lambda distribution.
The Fréchet distribution, also known as inverse Weibull distribution, [2] [3] is a special case of the generalized extreme value distribution. It has the cumulative distribution function ( ) = > . where α > 0 is a shape parameter.