Search results
Results from the WOW.Com Content Network
This mutation is associated with diverse health issues, however H63D syndrome is the only known specific expression of a homozygous HFE-H63D mutation to date. The homozygous HFE-H63D mutation is the cause of classic and treatable hemochromatosis in only 6.7% of its carriers. [25] H63D syndrome is independently a distinct entity, and the ...
A study of 3,011 unrelated white Australians found that 14% were heterozygous carriers of an HFE mutation, 0.5% were homozygous for an HFE mutation, and only 0.25% of the study population had clinically relevant iron overload. Most patients who are homozygous for HFE mutations do not manifest clinically relevant haemochromatosis (see Genetics ...
The 2015 version of this article was updated by an external expert under a dual publication model. The corresponding academic peer reviewed article was published in Gene and can be cited as: James C Barton, Corwin Q Edwards, Ronald T Acton (9 October 2015). "HFE gene: Structure, function, mutations, and associated iron abnormalities". Gene ...
Majority of the cases of hemochromatosis are caused by mutations in the HFE (Homeostatic Iron Regulator) gene. [17] Type 3 HH is characterized by compound heterozygote mutations in both transferrin receptor 2 (TFR2) and HFE, i.e. a single mutation in each gene. HFE is located on chromosome 6 and TFR2 is located on chromosome 7.
Clinically, most cases of hemochromatosis are found in homozygotes for the most common mutation in the HFE gene. [1] But at each gene locus associated with the disease, there is the possibility of compound heterozygosity, often caused by inheritance of two unrelated alleles, of which one is a common or classic mutation, while the other is a ...
Iron overload (also known as haemochromatosis or hemochromatosis) is the abnormal and increased accumulation of total iron in the body, leading to organ damage. [1] The primary mechanism of organ damage is oxidative stress, as elevated intracellular iron levels increase free radical formation via the Fenton reaction.
The HFE gene makes a protein that helps cells regulate the absorption of iron from the digestive tract and into the cells of the body. Certain mutations in the HFE gene cause hemochromatosis (an iron overload disorder). People who have these mutations are also at an increased risk of developing porphyria cutanea tarda. [citation needed]
HFE (gene), a gene that encodes the Human hemochromatosis protein; Hello from Earth, an interstellar radio message; Hidden Field Equations, a cryptosystem; H-parameter model (h FE), the current gain of a bipolar junction transistor; Human factors engineering; Hydrofluoroether, a solvent