enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Exact solutions in general relativity - Wikipedia

    en.wikipedia.org/wiki/Exact_solutions_in_general...

    In general relativity, an exact solution is a (typically closed form) solution of the Einstein field equations whose derivation does not invoke simplifying approximations of the equations, though the starting point for that derivation may be an idealized case like a perfectly spherical shape of matter.

  3. Einstein-aether theory - Wikipedia

    en.wikipedia.org/wiki/Einstein-aether_theory

    The action of the Einstein-aether theory is generally taken to consist of the sum of the Einstein–Hilbert action with a Lagrange multiplier λ that ensures that the time vector is a unit vector and also with all of the covariant terms involving the time vector u but having at most two derivatives.

  4. Postulates of special relativity - Wikipedia

    en.wikipedia.org/wiki/Postulates_of_special...

    The two-postulate basis for special relativity is the one historically used by Einstein, and it is sometimes the starting point today. As Einstein himself later acknowledged, the derivation of the Lorentz transformation tacitly makes use of some additional assumptions, including spatial homogeneity, isotropy, and memorylessness. [3]

  5. Einstein field equations - Wikipedia

    en.wikipedia.org/wiki/Einstein_field_equations

    The study of exact solutions of Einstein's field equations is one of the activities of cosmology. It leads to the prediction of black holes and to different models of evolution of the universe. One can also discover new solutions of the Einstein field equations via the method of orthonormal frames as pioneered by Ellis and MacCallum. [22]

  6. Solutions of the Einstein field equations - Wikipedia

    en.wikipedia.org/wiki/Solutions_of_the_Einstein...

    But if one requires an exact solution or a solution describing strong fields, the evolution of both the metric and the stress–energy tensor must be solved for at once. To obtain solutions, the relevant equations are the above quoted EFE (in either form) plus the continuity equation (to determine the evolution of the stress–energy tensor):

  7. Relativity of simultaneity - Wikipedia

    en.wikipedia.org/wiki/Relativity_of_simultaneity

    [3] [4] This was done in 1900, when Poincaré derived local time by assuming that the speed of light is invariant within the aether. Due to the "principle of relative motion", moving observers within the aether also assume that they are at rest and that the speed of light is constant in all directions (only to first order in v/c). Therefore, if ...

  8. History of special relativity - Wikipedia

    en.wikipedia.org/wiki/History_of_special_relativity

    Einstein's paper includes a fundamental description of the kinematics of the rigid body, and it did not require an absolutely stationary space, such as the aether. Einstein identified two fundamental principles, the principle of relativity and the principle of the constancy of light (light principle), which served as the axiomatic basis of his ...

  9. Oppenheimer–Snyder model - Wikipedia

    en.wikipedia.org/wiki/Oppenheimer–Snyder_model

    Albert Einstein, who had developed his theory of general relativity in 1915, initially denied the possibility of black holes, [4] even though they were a genuine implication of the Schwarzschild metric, obtained by Karl Schwarzschild in 1916, the first known non-trivial exact solution to Einstein's field equations. [1]