Search results
Results from the WOW.Com Content Network
In chemistry, the haloform reaction (also referred to as the Lieben haloform reaction) is a chemical reaction in which a haloform (CHX 3, where X is a halogen) is produced by the exhaustive halogenation of an acetyl group (R−C(=O)CH 3, where R can be either a hydrogen atom, an alkyl or an aryl group), in the presence of a base.
In chemistry, halogenation is a chemical reaction which introduces one or more halogens into a chemical compound. Halide-containing compounds are pervasive, making this type of transformation important, e.g. in the production of polymers, drugs. [1] This kind of conversion is in fact so common that a comprehensive overview is challenging.
In organic chemistry, an electrophilic aromatic halogenation is a type of electrophilic aromatic substitution. This organic reaction is typical of aromatic compounds and a very useful method for adding substituents to an aromatic system.
For example, phenols and anilines react quickly with chlorine and bromine water to give multihalogenated products. Many detailed laboratory procedures are available. [ 5 ] For alkylbenzene derivatives, e.g. toluene , the alkyl positions tend to be halogenated by free radical conditions, whereas ring halogenation is favored in the presence of ...
For example, consider radical bromination of toluene: [5] bromination of toluene with hydrobromic acid and hydrogen peroxide in water. This reaction takes place on water instead of an organic solvent and the bromine is obtained from oxidation of hydrobromic acid with hydrogen peroxide. An incandescent light bulb suffices to radicalize.
A halogen addition reaction is a simple organic reaction where a halogen molecule is added to the carbon–carbon double bond of an alkene functional group. [1]The general chemical formula of the halogen addition reaction is:
Acyl halides are rather reactive compounds often synthesized to be used as intermediates in the synthesis of other organic compounds. For example, an acyl halide can react with: water, to form a carboxylic acid. This hydrolysis is the most heavily exploited reaction for acyl halides as it occurs in the industrial synthesis of acetic acid.
Regiochemistry follows from the reaction mechanism, which exhibits halogen attack on the least-hindered unsaturated carbon. The mechanism for this chain reaction resembles free radical halogenation, in which the peroxide promotes formation of the bromine radical. However, this process is restricted to addition of HBr.