Search results
Results from the WOW.Com Content Network
RNA-Seq can also be used to determine exon/intron boundaries and verify or amend previously annotated 5' and 3' gene boundaries. Recent advances in RNA-Seq include single cell sequencing, bulk RNA sequencing, [6] 3' mRNA-sequencing, in situ sequencing of fixed tissue, and native RNA molecule sequencing with single-molecule real-time sequencing. [7]
The binding of the ADAR2 enzyme to the RNA timestamp initiates the gradual conversion of adenosine to inosine molecules. Over time, these edits accumulate and are then read through RNA-seq. This technology allows us to glean cell-type specific temporal information associated with RNA-seq data, that until now, has not been accessible. [1]
Currently RNA-Seq relies on copying RNA molecules into cDNA molecules prior to sequencing; therefore, the subsequent platforms are the same for transcriptomic and genomic data. Consequently, the development of DNA sequencing technologies has been a defining feature of RNA-Seq. [ 78 ] [ 80 ] [ 81 ] Direct sequencing of RNA using nanopore ...
RNA-seq is emerging (2013) as the method of choice for measuring transcriptomes of organisms, though the older technique of DNA microarrays is still used. [1] RNA-seq measures the transcription of a specific gene by converting long RNAs into a library of cDNA fragments. The cDNA fragments are then sequenced using high-throughput sequencing ...
Normally, in a traditional RNA-seq, microarray, or SAGE experiment RNA is extracted from a biological sample such as cultured cells, and the RNA is analyzed using the chosen method. The data obtained from such an experiment corresponds to abundance of RNA under the given experimental conditions at the time of harvest.
RNA Seq Experiment. The single-cell RNA-seq technique converts a population of RNAs to a library of cDNA fragments. These fragments are sequenced by high-throughput next generation sequencing techniques and the reads are mapped back to the reference genome, providing a count of the number of reads associated with each gene. [13]
The tools used at this stage depend on the sequencing platform. For instance, FastQC checks the quality of short reads (including RNA sequences), Nanoplot or PycoQC are used for long read sequences (e.g. Nanopore sequence reads), and MultiQC aggregates the result of FastQC in a webpage format. [11] [12] [13]
queryable-rna-seq-database Formally known as the Queryable RNA-Seq Database, this system is designed to simplify the process of RNA-seq analysis by providing the ability upload the result data from RNA-Seq analysis into a database, store it, and query it in many different ways.