Search results
Results from the WOW.Com Content Network
The NLEVP collection of nonlinear eigenvalue problems is a MATLAB package containing many nonlinear eigenvalue problems with various properties. [ 6 ] The FEAST eigenvalue solver is a software package for standard eigenvalue problems as well as nonlinear eigenvalue problems, designed from density-matrix representation in quantum mechanics ...
Rayleigh quotient iteration is an eigenvalue algorithm which extends the idea of the inverse iteration by using the Rayleigh quotient to obtain increasingly accurate eigenvalue estimates. Rayleigh quotient iteration is an iterative method, that is, it delivers a sequence of approximate solutions that converges to a true solution in the limit ...
The constitutive eigenvalue equation we finally have to solve becomes, (+) (+) = This can be solved by building a matrix for the terms in the left hand side, and finding its eigenvalue and vectors. The eigenvalues correspond to the modal solutions, while the corresponding magnetic or electric fields themselves can be plotted using the Fourier ...
Given an n × n square matrix A of real or complex numbers, an eigenvalue λ and its associated generalized eigenvector v are a pair obeying the relation [1] =,where v is a nonzero n × 1 column vector, I is the n × n identity matrix, k is a positive integer, and both λ and v are allowed to be complex even when A is real.l When k = 1, the vector is called simply an eigenvector, and the pair ...
Another is to find the normal modes of a structure (e.g. a waveguide) in the absence of sources: in this case the frequency ω is itself a variable, and one obtains an eigenproblem = (usually, the eigenvalue λ is ω 2). An early description of an FDTD method to solve electromagnetic eigenproblems was published by Albani and Bernardi (1974).
In numerical linear algebra, the Arnoldi iteration is an eigenvalue algorithm and an important example of an iterative method.Arnoldi finds an approximation to the eigenvalues and eigenvectors of general (possibly non-Hermitian) matrices by constructing an orthonormal basis of the Krylov subspace, which makes it particularly useful when dealing with large sparse matrices.
In mathematics, an eigenvalue perturbation problem is that of finding the eigenvectors and eigenvalues of a system = that is perturbed from one with known eigenvectors and eigenvalues =. This is useful for studying how sensitive the original system's eigenvectors and eigenvalues x 0 i , λ 0 i , i = 1 , … n {\displaystyle x_{0i},\lambda _{0i ...
In other words, to solve the eigenvalue problem Lψ = λψ at time t, it is possible to solve the same problem at time 0, where L is generally known better, and to propagate the solution with the following formulas: = (no change in spectrum),